|
import math |
|
import warnings |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import Conv1d |
|
from torch.nn import functional as F |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils.parametrizations import weight_norm |
|
|
|
import commons |
|
from attentions import Encoder |
|
from commons import get_padding, init_weights |
|
from transforms import piecewise_rational_quadratic_transform |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, -1) |
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) |
|
return x.transpose(1, -1) |
|
|
|
|
|
class ConvReluNorm(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
hidden_channels, |
|
out_channels, |
|
kernel_size, |
|
n_layers, |
|
p_dropout, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
assert n_layers > 1, "Number of layers should be larger than 0." |
|
|
|
self.conv_layers = nn.ModuleList() |
|
self.norm_layers = nn.ModuleList() |
|
self.conv_layers.append( |
|
nn.Conv1d( |
|
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) |
|
for _ in range(n_layers - 1): |
|
self.conv_layers.append( |
|
nn.Conv1d( |
|
hidden_channels, |
|
hidden_channels, |
|
kernel_size, |
|
padding=kernel_size // 2, |
|
) |
|
) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
x_org = x |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.norm_layers[i](x) |
|
x = self.relu_drop(x) |
|
x = x_org + self.proj(x) |
|
return x * x_mask |
|
|
|
|
|
class DDSConv(nn.Module): |
|
""" |
|
Dialted and Depth-Separable Convolution |
|
""" |
|
|
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): |
|
super().__init__() |
|
self.channels = channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.convs_sep = nn.ModuleList() |
|
self.convs_1x1 = nn.ModuleList() |
|
self.norms_1 = nn.ModuleList() |
|
self.norms_2 = nn.ModuleList() |
|
for i in range(n_layers): |
|
dilation = kernel_size**i |
|
padding = (kernel_size * dilation - dilation) // 2 |
|
self.convs_sep.append( |
|
nn.Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
groups=channels, |
|
dilation=dilation, |
|
padding=padding, |
|
) |
|
) |
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) |
|
self.norms_1.append(LayerNorm(channels)) |
|
self.norms_2.append(LayerNorm(channels)) |
|
|
|
def forward(self, x, x_mask, g=None): |
|
if g is not None: |
|
x = x + g |
|
for i in range(self.n_layers): |
|
y = self.convs_sep[i](x * x_mask) |
|
y = self.norms_1[i](y) |
|
y = F.gelu(y) |
|
y = self.convs_1x1[i](y) |
|
y = self.norms_2[i](y) |
|
y = F.gelu(y) |
|
y = self.drop(y) |
|
x = x + y |
|
return x * x_mask |
|
|
|
|
|
class WN(torch.nn.Module): |
|
def __init__( |
|
self, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
p_dropout=0, |
|
): |
|
super(WN, self).__init__() |
|
assert kernel_size % 2 == 1 |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = (kernel_size,) |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
if gin_channels != 0: |
|
cond_layer = torch.nn.Conv1d( |
|
gin_channels, 2 * hidden_channels * n_layers, 1 |
|
) |
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm(cond_layer, name="weight") |
|
|
|
for i in range(n_layers): |
|
dilation = dilation_rate**i |
|
padding = int((kernel_size * dilation - dilation) / 2) |
|
in_layer = torch.nn.Conv1d( |
|
hidden_channels, |
|
2 * hidden_channels, |
|
kernel_size, |
|
dilation=dilation, |
|
padding=padding, |
|
) |
|
in_layer = torch.nn.utils.parametrizations.weight_norm(in_layer, name="weight") |
|
self.in_layers.append(in_layer) |
|
|
|
|
|
if i < n_layers - 1: |
|
res_skip_channels = 2 * hidden_channels |
|
else: |
|
res_skip_channels = hidden_channels |
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.parametrizations.weight_norm(res_skip_layer, name="weight") |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
def forward(self, x, x_mask, g=None, **kwargs): |
|
output = torch.zeros_like(x) |
|
n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
|
|
if g is not None: |
|
g = self.cond_layer(g) |
|
|
|
for i in range(self.n_layers): |
|
x_in = self.in_layers[i](x) |
|
if g is not None: |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] |
|
else: |
|
g_l = torch.zeros_like(x_in) |
|
|
|
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) |
|
acts = self.drop(acts) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.n_layers - 1: |
|
res_acts = res_skip_acts[:, : self.hidden_channels, :] |
|
x = (x + res_acts) * x_mask |
|
output = output + res_skip_acts[:, self.hidden_channels :, :] |
|
else: |
|
output = output + res_skip_acts |
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
if self.gin_channels != 0: |
|
torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
for l in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
for l in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x, x_mask=None): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c2(xt) |
|
x = xt + x |
|
if x_mask is not None: |
|
x = x * x_mask |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x, x_mask=None): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c(xt) |
|
x = xt + x |
|
if x_mask is not None: |
|
x = x * x_mask |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class Log(nn.Module): |
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
if not reverse: |
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask |
|
logdet = torch.sum(-y, [1, 2]) |
|
return y, logdet |
|
else: |
|
x = torch.exp(x) * x_mask |
|
return x |
|
|
|
|
|
class Flip(nn.Module): |
|
def forward(self, x, *args, reverse=False, **kwargs): |
|
x = torch.flip(x, [1]) |
|
if not reverse: |
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) |
|
return x, logdet |
|
else: |
|
return x |
|
|
|
|
|
class ElementwiseAffine(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.channels = channels |
|
self.m = nn.Parameter(torch.zeros(channels, 1)) |
|
self.logs = nn.Parameter(torch.zeros(channels, 1)) |
|
|
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
if not reverse: |
|
y = self.m + torch.exp(self.logs) * x |
|
y = y * x_mask |
|
logdet = torch.sum(self.logs * x_mask, [1, 2]) |
|
return y, logdet |
|
else: |
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask |
|
return x |
|
|
|
|
|
class ResidualCouplingLayer(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=0, |
|
gin_channels=0, |
|
mean_only=False, |
|
): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
self.enc = WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=p_dropout, |
|
gin_channels=gin_channels, |
|
) |
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1, 2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |
|
|
|
|
|
class ConvFlow(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
filter_channels, |
|
kernel_size, |
|
n_layers, |
|
num_bins=10, |
|
tail_bound=5.0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.num_bins = num_bins |
|
self.tail_bound = tail_bound |
|
self.half_channels = in_channels // 2 |
|
|
|
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) |
|
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) |
|
self.proj = nn.Conv1d( |
|
filter_channels, self.half_channels * (num_bins * 3 - 1), 1 |
|
) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) |
|
h = self.convs(h, x_mask, g=g) |
|
h = self.proj(h) * x_mask |
|
|
|
b, c, t = x0.shape |
|
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) |
|
|
|
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) |
|
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( |
|
self.filter_channels |
|
) |
|
unnormalized_derivatives = h[..., 2 * self.num_bins :] |
|
|
|
x1, logabsdet = piecewise_rational_quadratic_transform( |
|
x1, |
|
unnormalized_widths, |
|
unnormalized_heights, |
|
unnormalized_derivatives, |
|
inverse=reverse, |
|
tails="linear", |
|
tail_bound=self.tail_bound, |
|
) |
|
|
|
x = torch.cat([x0, x1], 1) * x_mask |
|
logdet = torch.sum(logabsdet * x_mask, [1, 2]) |
|
if not reverse: |
|
return x, logdet |
|
else: |
|
return x |
|
|
|
|
|
class TransformerCouplingLayer(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
n_layers, |
|
n_heads, |
|
p_dropout=0, |
|
filter_channels=0, |
|
mean_only=False, |
|
wn_sharing_parameter=None, |
|
gin_channels=0, |
|
): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
self.enc = ( |
|
Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
isflow=True, |
|
gin_channels=gin_channels, |
|
) |
|
if wn_sharing_parameter is None |
|
else wn_sharing_parameter |
|
) |
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels] * 2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1, 2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |
|
|