File size: 28,642 Bytes
6613f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
import math, pdb, os
from time import time as ttime
import torch
from torch import nn
from torch.nn import functional as F
from lib.infer_pack import modules
from lib.infer_pack import attentions
from lib.infer_pack import commons
from lib.infer_pack.commons import init_weights, get_padding
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import spectral_norm, weight_norm
from lib.infer_pack.commons import init_weights
import numpy as np
from lib.infer_pack import commons


class TextEncoder256(nn.Module):
    def __init__(

        self,

        out_channels,

        hidden_channels,

        filter_channels,

        n_heads,

        n_layers,

        kernel_size,

        p_dropout,

        f0=True,

    ):
        super().__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.emb_phone = nn.Linear(256, hidden_channels)
        self.lrelu = nn.LeakyReLU(0.1, inplace=True)
        if f0 == True:
            self.emb_pitch = nn.Embedding(256, hidden_channels)  # pitch 256
        self.encoder = attentions.Encoder(
            hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, phone, pitch, lengths):
        if pitch == None:
            x = self.emb_phone(phone)
        else:
            x = self.emb_phone(phone) + self.emb_pitch(pitch)
        x = x * math.sqrt(self.hidden_channels)  # [b, t, h]
        x = self.lrelu(x)
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
            x.dtype
        )
        x = self.encoder(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask

        m, logs = torch.split(stats, self.out_channels, dim=1)
        return m, logs, x_mask


class TextEncoder768(nn.Module):
    def __init__(

        self,

        out_channels,

        hidden_channels,

        filter_channels,

        n_heads,

        n_layers,

        kernel_size,

        p_dropout,

        f0=True,

    ):
        super().__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.emb_phone = nn.Linear(768, hidden_channels)
        self.lrelu = nn.LeakyReLU(0.1, inplace=True)
        if f0 == True:
            self.emb_pitch = nn.Embedding(256, hidden_channels)  # pitch 256
        self.encoder = attentions.Encoder(
            hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, phone, pitch, lengths):
        if pitch == None:
            x = self.emb_phone(phone)
        else:
            x = self.emb_phone(phone) + self.emb_pitch(pitch)
        x = x * math.sqrt(self.hidden_channels)  # [b, t, h]
        x = self.lrelu(x)
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
            x.dtype
        )
        x = self.encoder(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask

        m, logs = torch.split(stats, self.out_channels, dim=1)
        return m, logs, x_mask


class ResidualCouplingBlock(nn.Module):
    def __init__(

        self,

        channels,

        hidden_channels,

        kernel_size,

        dilation_rate,

        n_layers,

        n_flows=4,

        gin_channels=0,

    ):
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = nn.ModuleList()
        for i in range(n_flows):
            self.flows.append(
                modules.ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(modules.Flip())

    def forward(self, x, x_mask, g=None, reverse=False):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow(x, x_mask, g=g, reverse=reverse)
        return x

    def remove_weight_norm(self):
        for i in range(self.n_flows):
            self.flows[i * 2].remove_weight_norm()


class PosteriorEncoder(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        hidden_channels,

        kernel_size,

        dilation_rate,

        n_layers,

        gin_channels=0,

    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = modules.WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            gin_channels=gin_channels,
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def forward(self, x, x_lengths, g=None):
        x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
            x.dtype
        )
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask

    def remove_weight_norm(self):
        self.enc.remove_weight_norm()


class Generator(torch.nn.Module):
    def __init__(

        self,

        initial_channel,

        resblock,

        resblock_kernel_sizes,

        resblock_dilation_sizes,

        upsample_rates,

        upsample_initial_channel,

        upsample_kernel_sizes,

        gin_channels=0,

    ):
        super(Generator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = Conv1d(
            initial_channel, upsample_initial_channel, 7, 1, padding=3
        )
        resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(self, x, g=None):
        x = self.conv_pre(x)
        if g is not None:
            x = x + self.cond(g)

        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()


class SineGen(torch.nn.Module):
    """Definition of sine generator

    SineGen(samp_rate, harmonic_num = 0,

            sine_amp = 0.1, noise_std = 0.003,

            voiced_threshold = 0,

            flag_for_pulse=False)

    samp_rate: sampling rate in Hz

    harmonic_num: number of harmonic overtones (default 0)

    sine_amp: amplitude of sine-wavefrom (default 0.1)

    noise_std: std of Gaussian noise (default 0.003)

    voiced_thoreshold: F0 threshold for U/V classification (default 0)

    flag_for_pulse: this SinGen is used inside PulseGen (default False)

    Note: when flag_for_pulse is True, the first time step of a voiced

        segment is always sin(np.pi) or cos(0)

    """

    def __init__(

        self,

        samp_rate,

        harmonic_num=0,

        sine_amp=0.1,

        noise_std=0.003,

        voiced_threshold=0,

        flag_for_pulse=False,

    ):
        super(SineGen, self).__init__()
        self.sine_amp = sine_amp
        self.noise_std = noise_std
        self.harmonic_num = harmonic_num
        self.dim = self.harmonic_num + 1
        self.sampling_rate = samp_rate
        self.voiced_threshold = voiced_threshold

    def _f02uv(self, f0):
        # generate uv signal
        uv = torch.ones_like(f0)
        uv = uv * (f0 > self.voiced_threshold)
        return uv

    def forward(self, f0, upp):
        """sine_tensor, uv = forward(f0)

        input F0: tensor(batchsize=1, length, dim=1)

                  f0 for unvoiced steps should be 0

        output sine_tensor: tensor(batchsize=1, length, dim)

        output uv: tensor(batchsize=1, length, 1)

        """
        with torch.no_grad():
            f0 = f0[:, None].transpose(1, 2)
            f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
            # fundamental component
            f0_buf[:, :, 0] = f0[:, :, 0]
            for idx in np.arange(self.harmonic_num):
                f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
                    idx + 2
                )  # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
            rad_values = (f0_buf / self.sampling_rate) % 1  ###%1意味着n_har的乘积无法后处理优化
            rand_ini = torch.rand(
                f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
            )
            rand_ini[:, 0] = 0
            rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
            tmp_over_one = torch.cumsum(rad_values, 1)  # % 1  #####%1意味着后面的cumsum无法再优化
            tmp_over_one *= upp
            tmp_over_one = F.interpolate(
                tmp_over_one.transpose(2, 1),
                scale_factor=upp,
                mode="linear",
                align_corners=True,
            ).transpose(2, 1)
            rad_values = F.interpolate(
                rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
            ).transpose(
                2, 1
            )  #######
            tmp_over_one %= 1
            tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
            cumsum_shift = torch.zeros_like(rad_values)
            cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
            sine_waves = torch.sin(
                torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
            )
            sine_waves = sine_waves * self.sine_amp
            uv = self._f02uv(f0)
            uv = F.interpolate(
                uv.transpose(2, 1), scale_factor=upp, mode="nearest"
            ).transpose(2, 1)
            noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
            noise = noise_amp * torch.randn_like(sine_waves)
            sine_waves = sine_waves * uv + noise
        return sine_waves, uv, noise


class SourceModuleHnNSF(torch.nn.Module):
    """SourceModule for hn-nsf

    SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,

                 add_noise_std=0.003, voiced_threshod=0)

    sampling_rate: sampling_rate in Hz

    harmonic_num: number of harmonic above F0 (default: 0)

    sine_amp: amplitude of sine source signal (default: 0.1)

    add_noise_std: std of additive Gaussian noise (default: 0.003)

        note that amplitude of noise in unvoiced is decided

        by sine_amp

    voiced_threshold: threhold to set U/V given F0 (default: 0)

    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)

    F0_sampled (batchsize, length, 1)

    Sine_source (batchsize, length, 1)

    noise_source (batchsize, length 1)

    uv (batchsize, length, 1)

    """

    def __init__(

        self,

        sampling_rate,

        harmonic_num=0,

        sine_amp=0.1,

        add_noise_std=0.003,

        voiced_threshod=0,

        is_half=True,

    ):
        super(SourceModuleHnNSF, self).__init__()

        self.sine_amp = sine_amp
        self.noise_std = add_noise_std
        self.is_half = is_half
        # to produce sine waveforms
        self.l_sin_gen = SineGen(
            sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
        )

        # to merge source harmonics into a single excitation
        self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = torch.nn.Tanh()

    def forward(self, x, upp=None):
        sine_wavs, uv, _ = self.l_sin_gen(x, upp)
        if self.is_half:
            sine_wavs = sine_wavs.half()
        sine_merge = self.l_tanh(self.l_linear(sine_wavs))
        return sine_merge, None, None  # noise, uv


class GeneratorNSF(torch.nn.Module):
    def __init__(

        self,

        initial_channel,

        resblock,

        resblock_kernel_sizes,

        resblock_dilation_sizes,

        upsample_rates,

        upsample_initial_channel,

        upsample_kernel_sizes,

        gin_channels,

        sr,

        is_half=False,

    ):
        super(GeneratorNSF, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)

        self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
        self.m_source = SourceModuleHnNSF(
            sampling_rate=sr, harmonic_num=0, is_half=is_half
        )
        self.noise_convs = nn.ModuleList()
        self.conv_pre = Conv1d(
            initial_channel, upsample_initial_channel, 7, 1, padding=3
        )
        resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            c_cur = upsample_initial_channel // (2 ** (i + 1))
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
            if i + 1 < len(upsample_rates):
                stride_f0 = np.prod(upsample_rates[i + 1 :])
                self.noise_convs.append(
                    Conv1d(
                        1,
                        c_cur,
                        kernel_size=stride_f0 * 2,
                        stride=stride_f0,
                        padding=stride_f0 // 2,
                    )
                )
            else:
                self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

        self.upp = np.prod(upsample_rates)

    def forward(self, x, f0, g=None):
        har_source, noi_source, uv = self.m_source(f0, self.upp)
        har_source = har_source.transpose(1, 2)
        x = self.conv_pre(x)
        if g is not None:
            x = x + self.cond(g)

        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            x = self.ups[i](x)
            x_source = self.noise_convs[i](har_source)
            x = x + x_source
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)
        return x

    def remove_weight_norm(self):
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()


sr2sr = {
    "32k": 32000,
    "40k": 40000,
    "48k": 48000,
}


class SynthesizerTrnMsNSFsidM(nn.Module):
    def __init__(

        self,

        spec_channels,

        segment_size,

        inter_channels,

        hidden_channels,

        filter_channels,

        n_heads,

        n_layers,

        kernel_size,

        p_dropout,

        resblock,

        resblock_kernel_sizes,

        resblock_dilation_sizes,

        upsample_rates,

        upsample_initial_channel,

        upsample_kernel_sizes,

        spk_embed_dim,

        gin_channels,

        sr,

        version,

        **kwargs

    ):
        super().__init__()
        if type(sr) == type("strr"):
            sr = sr2sr[sr]
        self.spec_channels = spec_channels
        self.inter_channels = inter_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.resblock = resblock
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes
        self.upsample_rates = upsample_rates
        self.upsample_initial_channel = upsample_initial_channel
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.segment_size = segment_size
        self.gin_channels = gin_channels
        # self.hop_length = hop_length#
        self.spk_embed_dim = spk_embed_dim
        if version == "v1":
            self.enc_p = TextEncoder256(
                inter_channels,
                hidden_channels,
                filter_channels,
                n_heads,
                n_layers,
                kernel_size,
                p_dropout,
            )
        else:
            self.enc_p = TextEncoder768(
                inter_channels,
                hidden_channels,
                filter_channels,
                n_heads,
                n_layers,
                kernel_size,
                p_dropout,
            )
        self.dec = GeneratorNSF(
            inter_channels,
            resblock,
            resblock_kernel_sizes,
            resblock_dilation_sizes,
            upsample_rates,
            upsample_initial_channel,
            upsample_kernel_sizes,
            gin_channels=gin_channels,
            sr=sr,
            is_half=kwargs["is_half"],
        )
        self.enc_q = PosteriorEncoder(
            spec_channels,
            inter_channels,
            hidden_channels,
            5,
            1,
            16,
            gin_channels=gin_channels,
        )
        self.flow = ResidualCouplingBlock(
            inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
        )
        self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
        self.speaker_map = None
        print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)

    def remove_weight_norm(self):
        self.dec.remove_weight_norm()
        self.flow.remove_weight_norm()
        self.enc_q.remove_weight_norm()

    def construct_spkmixmap(self, n_speaker):
        self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
        for i in range(n_speaker):
            self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
        self.speaker_map = self.speaker_map.unsqueeze(0)

    def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
        if self.speaker_map is not None:  # [N, S]  *  [S, B, 1, H]
            g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1))  # [N, S, B, 1, 1]
            g = g * self.speaker_map  # [N, S, B, 1, H]
            g = torch.sum(g, dim=1)  # [N, 1, B, 1, H]
            g = g.transpose(0, -1).transpose(0, -2).squeeze(0)  # [B, H, N]
        else:
            g = g.unsqueeze(0)
            g = self.emb_g(g).transpose(1, 2)

        m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
        z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
        z = self.flow(z_p, x_mask, g=g, reverse=True)
        o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
        return o


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = [2, 3, 5, 7, 11, 17]
        # periods = [3, 5, 7, 11, 17, 23, 37]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [
            DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
        ]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []  #
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            # for j in range(len(fmap_r)):
            #     print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class MultiPeriodDiscriminatorV2(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminatorV2, self).__init__()
        # periods = [2, 3, 5, 7, 11, 17]
        periods = [2, 3, 5, 7, 11, 17, 23, 37]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [
            DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
        ]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []  #
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            # for j in range(len(fmap_r)):
            #     print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(DiscriminatorS, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList(
            [
                norm_f(Conv1d(1, 16, 15, 1, padding=7)),
                norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
                norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
                norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
                norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
                norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
            ]
        )
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        fmap = []

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        self.use_spectral_norm = use_spectral_norm
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList(
            [
                norm_f(
                    Conv2d(
                        1,
                        32,
                        (kernel_size, 1),
                        (stride, 1),
                        padding=(get_padding(kernel_size, 1), 0),
                    )
                ),
                norm_f(
                    Conv2d(
                        32,
                        128,
                        (kernel_size, 1),
                        (stride, 1),
                        padding=(get_padding(kernel_size, 1), 0),
                    )
                ),
                norm_f(
                    Conv2d(
                        128,
                        512,
                        (kernel_size, 1),
                        (stride, 1),
                        padding=(get_padding(kernel_size, 1), 0),
                    )
                ),
                norm_f(
                    Conv2d(
                        512,
                        1024,
                        (kernel_size, 1),
                        (stride, 1),
                        padding=(get_padding(kernel_size, 1), 0),
                    )
                ),
                norm_f(
                    Conv2d(
                        1024,
                        1024,
                        (kernel_size, 1),
                        1,
                        padding=(get_padding(kernel_size, 1), 0),
                    )
                ),
            ]
        )
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap