Spaces:
Runtime error
Runtime error
Add app file
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import tqdm
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
from baseline_BERT import id2label
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
model_ckpt = "Kithogue/2-lvl-events-multilingual"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
13 |
+
|
14 |
+
|
15 |
+
def get_inference(sample):
|
16 |
+
model_hf = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
17 |
+
encoding = tokenizer(sample, return_tensors="pt")
|
18 |
+
encoding = {k: v.to('cuda') for k, v in encoding.items()}
|
19 |
+
outputs = model_hf(**encoding)
|
20 |
+
logits = outputs.logits
|
21 |
+
# apply sigmoid + threshold
|
22 |
+
sigmoid = torch.nn.Sigmoid()
|
23 |
+
probs = sigmoid(logits.squeeze().cpu())
|
24 |
+
predictions = np.zeros(probs.shape)
|
25 |
+
predictions[np.where(probs >= 0.4)] = 1
|
26 |
+
# turn predicted id's into actual label names
|
27 |
+
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
|
28 |
+
return predicted_labels
|
29 |
+
|
30 |
+
|
31 |
+
gr.Interface(fn=get_inference, inputs=["text"], outputs=["text"]).launch(share=True)
|