Kleo commited on
Commit
4201432
1 Parent(s): 3493cbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -20
app.py CHANGED
@@ -7,21 +7,24 @@ Original file is located at
7
  https://colab.research.google.com/drive/148du8431_JkTaH-totdocC2aUXzOWimL
8
  """
9
 
10
-
11
  from transformers import BertTokenizer, TFBertForSequenceClassification
12
  import tensorflow as tf
 
13
 
14
  # Load tokenizer
15
- tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
16
 
17
  # Load model
18
- model = TFBertForSequenceClassification.from_pretrained('https://huggingface.co/spaces/Kleo/Sarcasm/tree/main')
19
 
 
20
  def check_sarcasm(sentence):
21
- tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
22
- tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
23
- tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
24
- pred_label = tf.argmax(tf_predictions, axis=1)
 
25
 
26
  if pred_label == 1:
27
  return "Sarcastic"
@@ -33,18 +36,6 @@ sentence = "Μεξικό: 25 νεκροί από την πτώση λεωφορ
33
  result = check_sarcasm(sentence)
34
  print(result)
35
 
36
- import gradio as gr
37
-
38
- def check_sarcasm(sentence):
39
- tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
40
- tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
41
- tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
42
- pred_label = tf.argmax(tf_predictions, axis=1)
43
-
44
- if pred_label == 1:
45
- return "Sarcastic"
46
- else:
47
- return "Not sarcastic"
48
 
49
  # Create a Gradio interface
50
  iface = gr.Interface(
@@ -53,7 +44,7 @@ iface = gr.Interface(
53
  outputs="text",
54
  title="Sarcasm Detection",
55
  server_name="0.0.0.0",
56
- description="Enter a headline and check if it's sarcastic."
57
  )
58
 
59
  # Launch the interface
 
7
  https://colab.research.google.com/drive/148du8431_JkTaH-totdocC2aUXzOWimL
8
  """
9
 
10
+ import gradio as gr
11
  from transformers import BertTokenizer, TFBertForSequenceClassification
12
  import tensorflow as tf
13
+ from transformers import pipeline
14
 
15
  # Load tokenizer
16
+ #tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
17
 
18
  # Load model
19
+ #model = TFBertForSequenceClassification.from_pretrained('https://huggingface.co/spaces/Kleo/Sarcasm/tree/main')
20
 
21
+ pipeline= pipeline(task="sequence-classification", model="https://huggingface.co/spaces/Kleo/Sarcasm/blob/main/fine-tuned-bert-gr.h5")
22
  def check_sarcasm(sentence):
23
+ #tf_batch = tokenizer(sentence, max_length=128, padding=True, truncation=True, return_tensors='tf')
24
+ #tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
25
+ #tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
26
+ #pred_label = tf.argmax(tf_predictions, axis=1)
27
+ pred_label=pipeline(sentence)
28
 
29
  if pred_label == 1:
30
  return "Sarcastic"
 
36
  result = check_sarcasm(sentence)
37
  print(result)
38
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  # Create a Gradio interface
41
  iface = gr.Interface(
 
44
  outputs="text",
45
  title="Sarcasm Detection",
46
  server_name="0.0.0.0",
47
+ description="Enter a headline from the Greek news and check if it's sarcastic."
48
  )
49
 
50
  # Launch the interface