Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ Original file is located at
|
|
10 |
import gradio as gr
|
11 |
from transformers import BertTokenizer, TFBertForSequenceClassification
|
12 |
import tensorflow as tf
|
13 |
-
|
14 |
|
15 |
# Load tokenizer
|
16 |
tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
|
@@ -24,18 +24,12 @@ def check_sarcasm(sentence):
|
|
24 |
tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
|
25 |
tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
26 |
pred_label = tf.argmax(tf_predictions, axis=1)
|
27 |
-
#pred_label=pipeline(sentence)
|
28 |
|
29 |
if pred_label == 1:
|
30 |
return "Sarcastic"
|
31 |
else:
|
32 |
return "Not sarcastic"
|
33 |
|
34 |
-
# Example usage
|
35 |
-
#sentence = "Μεξικό: 25 νεκροί από την πτώση λεωφορείου στον γκρεμό"
|
36 |
-
#result = check_sarcasm(sentence)
|
37 |
-
#print(result)
|
38 |
-
|
39 |
|
40 |
# Create a Gradio interface
|
41 |
iface = gr.Interface(
|
|
|
10 |
import gradio as gr
|
11 |
from transformers import BertTokenizer, TFBertForSequenceClassification
|
12 |
import tensorflow as tf
|
13 |
+
|
14 |
|
15 |
# Load tokenizer
|
16 |
tokenizer = BertTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-v1")
|
|
|
24 |
tf_outputs = model(tf_batch.input_ids, tf_batch.token_type_ids)
|
25 |
tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
26 |
pred_label = tf.argmax(tf_predictions, axis=1)
|
|
|
27 |
|
28 |
if pred_label == 1:
|
29 |
return "Sarcastic"
|
30 |
else:
|
31 |
return "Not sarcastic"
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Create a Gradio interface
|
35 |
iface = gr.Interface(
|