Kolpitor commited on
Commit
bd4a019
·
1 Parent(s): 13d3059

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -166
app.py CHANGED
@@ -1,174 +1,11 @@
1
- import os
2
- os.system('git clone --recursive https://github.com/dmlc/xgboost')
3
- os.system('cd xgboost')
4
- os.system('sudo cp make/minimum.mk ./config.mk;')
5
- os.system('sudo make -j4;')
6
- os.system('sh build.sh')
7
- os.system('cd python-package')
8
- os.system('python setup.py install')
9
- os.system('pip install graphviz')
10
- os.system('pip install python-pydot')
11
- os.system('pip install python-pydot-ng')
12
- os.system('pip install -U scikit-learn scipy matplotlib')
13
- os.system('pip install wandb --upgrade')
14
- os.system('pip install tensorboardX --upgrade')
15
- os.system('pip install ipython --upgrade')
16
- os.system('wandb login 5a0e81f39777351977ce52cf57ea09c4f48f3d93 --relogin')
17
 
18
- from collections import namedtuple
19
- import altair as alt
20
- import math
21
  import streamlit as st
22
- import pandas
23
- import numpy
24
- import xgboost
25
- import graphviz
26
- from sklearn.metrics import mean_squared_error
27
- from sklearn.model_selection import train_test_split
28
- import matplotlib.pyplot
29
- os.system('load_ext tensorboard')
30
- import os
31
- import datetime
32
- from tensorboardX import SummaryWriter
33
- import wandb
34
- from wandb.xgboost import wandb_callback
35
-
36
- wandb.init(project="australian_rain", entity="epitech1")
37
 
38
  """
39
- # MLOPS
40
  """
41
 
 
42
 
43
- max_depth_input = st.slider("Max depth", 1, 100, 5)
44
- colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5)
45
- learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2)
46
- alpha_input = st.slider("Alpha", 1, 100, 10)
47
- n_estimators_input = st.slider("n estimators", 1, 100, 20)
48
- city_input = st.selectbox(
49
- 'Which city do you want to predict rain ?',
50
- ("Canberra",
51
- "Albury",
52
- "Penrith",
53
- "Sydney",
54
- "MountGinini",
55
- "Bendigo",
56
- "Brisbane",
57
- "Portland"), index=0)
58
-
59
- dataset = pandas.read_csv('weatherAUS.csv')
60
-
61
- location_dataset = dataset["Location"].unique()
62
- wind_dataset = dataset["WindGustDir"].unique()
63
- date_dataset = dataset["Date"].unique()
64
-
65
- dataset.drop(dataset.loc[dataset['Location'] != city_input].index, inplace=True)
66
-
67
- i_RainTomorrow = dataset.columns.get_loc("RainTomorrow")
68
- #i_Location = dataset.columns.get_loc("Location")
69
- i_WindGustDir = dataset.columns.get_loc("WindGustDir")
70
- i_Date = dataset.columns.get_loc("Date")
71
- yes = dataset.iat[8, dataset.columns.get_loc("RainTomorrow")]
72
- no = dataset.iat[0, dataset.columns.get_loc("RainTomorrow")]
73
-
74
- for i in range(len(dataset)):
75
- if (dataset.iat[i, i_RainTomorrow] == yes):
76
- dataset.iat[i, i_RainTomorrow] = True
77
- else:
78
- dataset.iat[i, i_RainTomorrow] = False
79
- #dataset.iat[i, i_Location] = numpy.where(location_dataset == dataset.iat[i, i_Location])[0][0]
80
- if (pandas.isna(dataset.iat[i, i_WindGustDir])):
81
- dataset.iat[i, i_WindGustDir] = 0
82
- else:
83
- dataset.iat[i, i_WindGustDir] = numpy.where(wind_dataset == dataset.iat[i, i_WindGustDir])[0][0] + 1
84
- dataset.iat[i, i_Date] = numpy.where(date_dataset == dataset.iat[i, i_Date])[0][0]
85
-
86
-
87
- dataset = dataset.astype({'RainTomorrow': 'bool'})
88
- #dataset = dataset.astype({'Location': 'int'})
89
- dataset = dataset.astype({'WindGustDir': 'int'})
90
- dataset = dataset.astype({'Date': 'int'})
91
-
92
- dataset.drop(columns=["WindDir9am", "WindDir3pm", "WindSpeed9am", "WindSpeed3pm", "Temp9am", "Temp3pm", "RainToday"], inplace=True)
93
- dataset.drop(dataset.index[dataset.isnull().any(axis=1)], 0, inplace=True)
94
-
95
- dataset["Humidity"] = 0.0
96
- dataset["Pressure"] = 0.0
97
- dataset["Cloud"] = 0.0
98
-
99
- for i in dataset.index:
100
- humidity = (dataset["Humidity9am"][i] + dataset["Humidity3pm"][i]) / 2
101
- dataset.at[i, "Humidity"] = humidity
102
- pressure = (dataset["Pressure9am"][i] + dataset["Pressure3pm"][i]) / 2
103
- dataset.at[i, "Pressure"] = pressure
104
- cloud = (dataset["Cloud9am"][i] + dataset["Cloud3pm"][i]) / 2
105
- dataset.at[i, "Cloud"] = cloud
106
-
107
- dataset.drop(columns=["Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Cloud9am", "Cloud3pm"], inplace=True)
108
-
109
- x, y = dataset.iloc[:,[False, False, True, True, False, True, True, True, True, True, True, True, True]],dataset.iloc[:,4]
110
-
111
- data_dmatrix = xgboost.DMatrix(data=x,label=y)
112
-
113
- X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123)
114
-
115
- class TensorBoardCallback(xgboost.callback.TrainingCallback):
116
- def __init__(self, experiment: str = None, data_name: str = None):
117
- self.experiment = experiment or "logs"
118
- self.data_name = data_name or "test"
119
- self.datetime_ = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
120
- self.log_dir = f"runs/{self.experiment}/{self.datetime_}"
121
- self.train_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, "train/"))
122
- if self.data_name:
123
- self.test_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, f"{self.data_name}/"))
124
-
125
- def after_iteration(
126
- self, model, epoch: int, evals_log: xgboost.callback.TrainingCallback.EvalsLog
127
- ) -> bool:
128
- if not evals_log:
129
- return False
130
-
131
- for data, metric in evals_log.items():
132
- for metric_name, log in metric.items():
133
- score = log[-1][0] if isinstance(log[-1], tuple) else log[-1]
134
- if data == "train":
135
- self.train_writer.add_scalar(metric_name, score, epoch)
136
- else:
137
- self.test_writer.add_scalar(metric_name, score, epoch)
138
-
139
- return False
140
-
141
- xg_reg = xgboost.XGBRegressor(colsample_bytree = colsample_bytree_input, learning_rate = learning_rate_input, max_depth = max_depth_input, alpha = alpha_input, n_estimators = n_estimators_input, eval_metric = ['rmse', 'error', 'logloss', 'map'],
142
- callbacks=[TensorBoardCallback(experiment='exp_1', data_name='test')])
143
-
144
- xg_reg.fit(X_train,y_train, eval_set=[(X_train, y_train)])
145
-
146
- preds = xg_reg.predict(X_test)
147
-
148
- rmse = numpy.sqrt(mean_squared_error(y_test, preds))
149
- st.write("RMSE: %f" % (rmse))
150
-
151
- params = {'colsample_bytree': colsample_bytree_input,'learning_rate': learning_rate_input,
152
- 'max_depth': max_depth_input, 'alpha': alpha_input}
153
-
154
- cv_results = xgboost.cv(dtrain=data_dmatrix, params=params, nfold=3,
155
- num_boost_round=50,early_stopping_rounds=10,metrics="rmse", as_pandas=True, seed=123)
156
-
157
- st.write((cv_results["test-rmse-mean"]).tail(1))
158
-
159
- xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
160
-
161
- os.system('tensorboard --logdir runs')
162
-
163
- #xgboost.plot_tree(xg_reg,num_trees=0)
164
- #matplotlib.pyplot.rcParams['figure.figsize'] = [200, 200]
165
- #matplotlib.pyplot.show()
166
-
167
- #xgboost.plot_importance(xg_reg)
168
- #matplotlib.pyplot.rcParams['figure.figsize'] = [5, 5]
169
- #matplotlib.pyplot.show()
170
-
171
- #xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10, callbacks=[wandb_callback()])
172
 
173
- # MLOPS - W&B analytics
174
- # added the wandb to the callbacks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
 
 
 
2
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  """
5
+ # AI_ML
6
  """
7
 
8
+ uploaded_file = st.file_uploader("Choose a picture")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ st.image(load_image(uploaded_file),width=250)