Update app.py
Browse files
app.py
CHANGED
@@ -1,174 +1,11 @@
|
|
1 |
-
import os
|
2 |
-
os.system('git clone --recursive https://github.com/dmlc/xgboost')
|
3 |
-
os.system('cd xgboost')
|
4 |
-
os.system('sudo cp make/minimum.mk ./config.mk;')
|
5 |
-
os.system('sudo make -j4;')
|
6 |
-
os.system('sh build.sh')
|
7 |
-
os.system('cd python-package')
|
8 |
-
os.system('python setup.py install')
|
9 |
-
os.system('pip install graphviz')
|
10 |
-
os.system('pip install python-pydot')
|
11 |
-
os.system('pip install python-pydot-ng')
|
12 |
-
os.system('pip install -U scikit-learn scipy matplotlib')
|
13 |
-
os.system('pip install wandb --upgrade')
|
14 |
-
os.system('pip install tensorboardX --upgrade')
|
15 |
-
os.system('pip install ipython --upgrade')
|
16 |
-
os.system('wandb login 5a0e81f39777351977ce52cf57ea09c4f48f3d93 --relogin')
|
17 |
|
18 |
-
from collections import namedtuple
|
19 |
-
import altair as alt
|
20 |
-
import math
|
21 |
import streamlit as st
|
22 |
-
import pandas
|
23 |
-
import numpy
|
24 |
-
import xgboost
|
25 |
-
import graphviz
|
26 |
-
from sklearn.metrics import mean_squared_error
|
27 |
-
from sklearn.model_selection import train_test_split
|
28 |
-
import matplotlib.pyplot
|
29 |
-
os.system('load_ext tensorboard')
|
30 |
-
import os
|
31 |
-
import datetime
|
32 |
-
from tensorboardX import SummaryWriter
|
33 |
-
import wandb
|
34 |
-
from wandb.xgboost import wandb_callback
|
35 |
-
|
36 |
-
wandb.init(project="australian_rain", entity="epitech1")
|
37 |
|
38 |
"""
|
39 |
-
#
|
40 |
"""
|
41 |
|
|
|
42 |
|
43 |
-
max_depth_input = st.slider("Max depth", 1, 100, 5)
|
44 |
-
colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5)
|
45 |
-
learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2)
|
46 |
-
alpha_input = st.slider("Alpha", 1, 100, 10)
|
47 |
-
n_estimators_input = st.slider("n estimators", 1, 100, 20)
|
48 |
-
city_input = st.selectbox(
|
49 |
-
'Which city do you want to predict rain ?',
|
50 |
-
("Canberra",
|
51 |
-
"Albury",
|
52 |
-
"Penrith",
|
53 |
-
"Sydney",
|
54 |
-
"MountGinini",
|
55 |
-
"Bendigo",
|
56 |
-
"Brisbane",
|
57 |
-
"Portland"), index=0)
|
58 |
-
|
59 |
-
dataset = pandas.read_csv('weatherAUS.csv')
|
60 |
-
|
61 |
-
location_dataset = dataset["Location"].unique()
|
62 |
-
wind_dataset = dataset["WindGustDir"].unique()
|
63 |
-
date_dataset = dataset["Date"].unique()
|
64 |
-
|
65 |
-
dataset.drop(dataset.loc[dataset['Location'] != city_input].index, inplace=True)
|
66 |
-
|
67 |
-
i_RainTomorrow = dataset.columns.get_loc("RainTomorrow")
|
68 |
-
#i_Location = dataset.columns.get_loc("Location")
|
69 |
-
i_WindGustDir = dataset.columns.get_loc("WindGustDir")
|
70 |
-
i_Date = dataset.columns.get_loc("Date")
|
71 |
-
yes = dataset.iat[8, dataset.columns.get_loc("RainTomorrow")]
|
72 |
-
no = dataset.iat[0, dataset.columns.get_loc("RainTomorrow")]
|
73 |
-
|
74 |
-
for i in range(len(dataset)):
|
75 |
-
if (dataset.iat[i, i_RainTomorrow] == yes):
|
76 |
-
dataset.iat[i, i_RainTomorrow] = True
|
77 |
-
else:
|
78 |
-
dataset.iat[i, i_RainTomorrow] = False
|
79 |
-
#dataset.iat[i, i_Location] = numpy.where(location_dataset == dataset.iat[i, i_Location])[0][0]
|
80 |
-
if (pandas.isna(dataset.iat[i, i_WindGustDir])):
|
81 |
-
dataset.iat[i, i_WindGustDir] = 0
|
82 |
-
else:
|
83 |
-
dataset.iat[i, i_WindGustDir] = numpy.where(wind_dataset == dataset.iat[i, i_WindGustDir])[0][0] + 1
|
84 |
-
dataset.iat[i, i_Date] = numpy.where(date_dataset == dataset.iat[i, i_Date])[0][0]
|
85 |
-
|
86 |
-
|
87 |
-
dataset = dataset.astype({'RainTomorrow': 'bool'})
|
88 |
-
#dataset = dataset.astype({'Location': 'int'})
|
89 |
-
dataset = dataset.astype({'WindGustDir': 'int'})
|
90 |
-
dataset = dataset.astype({'Date': 'int'})
|
91 |
-
|
92 |
-
dataset.drop(columns=["WindDir9am", "WindDir3pm", "WindSpeed9am", "WindSpeed3pm", "Temp9am", "Temp3pm", "RainToday"], inplace=True)
|
93 |
-
dataset.drop(dataset.index[dataset.isnull().any(axis=1)], 0, inplace=True)
|
94 |
-
|
95 |
-
dataset["Humidity"] = 0.0
|
96 |
-
dataset["Pressure"] = 0.0
|
97 |
-
dataset["Cloud"] = 0.0
|
98 |
-
|
99 |
-
for i in dataset.index:
|
100 |
-
humidity = (dataset["Humidity9am"][i] + dataset["Humidity3pm"][i]) / 2
|
101 |
-
dataset.at[i, "Humidity"] = humidity
|
102 |
-
pressure = (dataset["Pressure9am"][i] + dataset["Pressure3pm"][i]) / 2
|
103 |
-
dataset.at[i, "Pressure"] = pressure
|
104 |
-
cloud = (dataset["Cloud9am"][i] + dataset["Cloud3pm"][i]) / 2
|
105 |
-
dataset.at[i, "Cloud"] = cloud
|
106 |
-
|
107 |
-
dataset.drop(columns=["Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Cloud9am", "Cloud3pm"], inplace=True)
|
108 |
-
|
109 |
-
x, y = dataset.iloc[:,[False, False, True, True, False, True, True, True, True, True, True, True, True]],dataset.iloc[:,4]
|
110 |
-
|
111 |
-
data_dmatrix = xgboost.DMatrix(data=x,label=y)
|
112 |
-
|
113 |
-
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123)
|
114 |
-
|
115 |
-
class TensorBoardCallback(xgboost.callback.TrainingCallback):
|
116 |
-
def __init__(self, experiment: str = None, data_name: str = None):
|
117 |
-
self.experiment = experiment or "logs"
|
118 |
-
self.data_name = data_name or "test"
|
119 |
-
self.datetime_ = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
120 |
-
self.log_dir = f"runs/{self.experiment}/{self.datetime_}"
|
121 |
-
self.train_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, "train/"))
|
122 |
-
if self.data_name:
|
123 |
-
self.test_writer = SummaryWriter(log_dir=os.path.join(self.log_dir, f"{self.data_name}/"))
|
124 |
-
|
125 |
-
def after_iteration(
|
126 |
-
self, model, epoch: int, evals_log: xgboost.callback.TrainingCallback.EvalsLog
|
127 |
-
) -> bool:
|
128 |
-
if not evals_log:
|
129 |
-
return False
|
130 |
-
|
131 |
-
for data, metric in evals_log.items():
|
132 |
-
for metric_name, log in metric.items():
|
133 |
-
score = log[-1][0] if isinstance(log[-1], tuple) else log[-1]
|
134 |
-
if data == "train":
|
135 |
-
self.train_writer.add_scalar(metric_name, score, epoch)
|
136 |
-
else:
|
137 |
-
self.test_writer.add_scalar(metric_name, score, epoch)
|
138 |
-
|
139 |
-
return False
|
140 |
-
|
141 |
-
xg_reg = xgboost.XGBRegressor(colsample_bytree = colsample_bytree_input, learning_rate = learning_rate_input, max_depth = max_depth_input, alpha = alpha_input, n_estimators = n_estimators_input, eval_metric = ['rmse', 'error', 'logloss', 'map'],
|
142 |
-
callbacks=[TensorBoardCallback(experiment='exp_1', data_name='test')])
|
143 |
-
|
144 |
-
xg_reg.fit(X_train,y_train, eval_set=[(X_train, y_train)])
|
145 |
-
|
146 |
-
preds = xg_reg.predict(X_test)
|
147 |
-
|
148 |
-
rmse = numpy.sqrt(mean_squared_error(y_test, preds))
|
149 |
-
st.write("RMSE: %f" % (rmse))
|
150 |
-
|
151 |
-
params = {'colsample_bytree': colsample_bytree_input,'learning_rate': learning_rate_input,
|
152 |
-
'max_depth': max_depth_input, 'alpha': alpha_input}
|
153 |
-
|
154 |
-
cv_results = xgboost.cv(dtrain=data_dmatrix, params=params, nfold=3,
|
155 |
-
num_boost_round=50,early_stopping_rounds=10,metrics="rmse", as_pandas=True, seed=123)
|
156 |
-
|
157 |
-
st.write((cv_results["test-rmse-mean"]).tail(1))
|
158 |
-
|
159 |
-
xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
|
160 |
-
|
161 |
-
os.system('tensorboard --logdir runs')
|
162 |
-
|
163 |
-
#xgboost.plot_tree(xg_reg,num_trees=0)
|
164 |
-
#matplotlib.pyplot.rcParams['figure.figsize'] = [200, 200]
|
165 |
-
#matplotlib.pyplot.show()
|
166 |
-
|
167 |
-
#xgboost.plot_importance(xg_reg)
|
168 |
-
#matplotlib.pyplot.rcParams['figure.figsize'] = [5, 5]
|
169 |
-
#matplotlib.pyplot.show()
|
170 |
-
|
171 |
-
#xg_reg = xgboost.train(params=params, dtrain=data_dmatrix, num_boost_round=10, callbacks=[wandb_callback()])
|
172 |
|
173 |
-
|
174 |
-
# added the wandb to the callbacks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
+
# AI_ML
|
6 |
"""
|
7 |
|
8 |
+
uploaded_file = st.file_uploader("Choose a picture")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
st.image(load_image(uploaded_file),width=250)
|
|