import streamlit as st from PIL import Image import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import Convolution2D from keras.layers.convolutional import MaxPooling2D from sklearn.preprocessing import LabelEncoder, OneHotEncoder from keras.preprocessing.image import img_to_array, load_img from keras import backend as K from subprocess import check_output from sklearn import preprocessing """ # AI_ML """ uploaded_file = st.file_uploader("Choose a picture", type=["png","jpg","jpeg"]) if uploaded_file is not None: st.image(Image.open(uploaded_file),width=250) train = pd.read_csv("./sign_mnist_train.csv").values test = pd.read_csv("./sign_mnist_test.csv").values trainX = train[:, 1:].reshape(train.shape[0], 1, 28, 28).astype('float32') X_train = trainX / 255.0 y_train = train[:, 0] testX = test[:, 1:].reshape(test.shape[0], 1, 28, 28).astype('float32') X_test = testX / 255.0 y_test = test[:, 0] lb = preprocessing.LabelBinarizer() y_train = lb.fit_transform(y_train) y_test = lb.fit_transform(y_test) model = Sequential() try: if K.backend() == 'theano': K.set_image_data_format('channels_first') else: K.set_image_data_format('channels_last') except AttributeError: if K._BACKEND == 'theano': K.set_image_dim_ordering('th') else: K.set_image_dim_ordering('tf') model.add(Convolution2D(30, 5, 5, padding='same', input_shape=(1, 28, 28), activation='relu')) model.add(MaxPooling2D(pool_size=(1, 1))) model.add(Convolution2D(15, 3, 3, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), padding='same')) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(24, activation='relu')) #model.add(Dense(50, activation='relu')) model.add(Dense(24, activation='softmax')) model.fit(X_train, y_train, epochs=20, batch_size=128) score = model.evaluate(X_test, y_test, batch_size=128) model.summary() img = load_img("o.jpg", grayscale=True, target_size=(28, 28)) img = img_to_array(img) img = img.reshape(1, 1, 28, 28) img = img.astype('float32') img = img / 255.0 predict_x = model.predict(img) classes_x = np.argmax(predict_x,axis=1) print(classes_x[0])