convert-sd-ckpt-cpu / convert.py
Korakoe's picture
convert to cpu only
c72f18a
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the Stable Diffusion checkpoints. """
import torch
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
)
from diffusers import (AutoencoderKL, DDIMScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
LMSDiscreteScheduler, PNDMScheduler,
StableDiffusionPipeline, UNet2DConditionModel)
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import (
LDMBertConfig, LDMBertModel)
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor, CLIPTextModel, CLIPTokenizer
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(
paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
config=None,
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(
paths, list
), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape(
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
)
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if (
attention_paths_to_split is not None
and new_path in attention_paths_to_split
):
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_unet_diffusers_config(original_config):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
unet_params = original_config.model.params.unet_config.params
block_out_channels = [
unet_params.model_channels * mult for mult in unet_params.channel_mult
]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = (
"CrossAttnDownBlock2D"
if resolution in unet_params.attention_resolutions
else "DownBlock2D"
)
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = (
"CrossAttnUpBlock2D"
if resolution in unet_params.attention_resolutions
else "UpBlock2D"
)
up_block_types.append(block_type)
resolution //= 2
config = dict(
sample_size=unet_params.image_size,
in_channels=unet_params.in_channels,
out_channels=unet_params.out_channels,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
layers_per_block=unet_params.num_res_blocks,
cross_attention_dim=unet_params.context_dim,
attention_head_dim=unet_params.num_heads,
)
return config
def create_vae_diffusers_config(original_config):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=vae_params.resolution,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
)
return config
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
beta_schedule="scaled_linear",
)
return schedular
def create_ldm_bert_config(original_config):
bert_params = original_config.model.parms.cond_stage_config.params
config = LDMBertConfig(
d_model=bert_params.n_embed,
encoder_layers=bert_params.n_layer,
encoder_ffn_dim=bert_params.n_embed * 4,
)
return config
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print(f"Checkpoint has both EMA and non-EMA weights.")
if extract_ema:
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(
flat_ema_key
)
else:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[
"time_embed.0.weight"
]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[
"time_embed.0.bias"
]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[
"time_embed.2.weight"
]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[
"time_embed.2.bias"
]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "input_blocks" in layer
}
)
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "middle_block" in layer
}
)
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "output_blocks" in layer
}
)
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key
for key in input_blocks[i]
if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[
f"down_blocks.{block_id}.downsamplers.0.conv.weight"
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight")
new_checkpoint[
f"down_blocks.{block_id}.downsamplers.0.conv.bias"
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias")
paths = renew_resnet_paths(resnets)
meta_path = {
"old": f"input_blocks.{i}.0",
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"input_blocks.{i}.1",
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key
]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {
"old": f"output_blocks.{i}.0",
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
if ["conv.weight", "conv.bias"] in output_block_list.values():
index = list(output_block_list.values()).index(
["conv.weight", "conv.bias"]
)
new_checkpoint[
f"up_blocks.{block_id}.upsamplers.0.conv.weight"
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"]
new_checkpoint[
f"up_blocks.{block_id}.upsamplers.0.conv.bias"
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
else:
resnet_0_paths = renew_resnet_paths(
output_block_layers, n_shave_prefix_segments=1
)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(
[
"up_blocks",
str(block_id),
"resnets",
str(layer_in_block_id),
path["new"],
]
)
new_checkpoint[new_path] = unet_state_dict[old_path]
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
"encoder.conv_out.weight"
]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
"encoder.norm_out.weight"
]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
"encoder.norm_out.bias"
]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
"decoder.conv_out.weight"
]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
"decoder.norm_out.weight"
]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
"decoder.norm_out.bias"
]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len(
{
".".join(layer.split(".")[:3])
for layer in vae_state_dict
if "encoder.down" in layer
}
)
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len(
{
".".join(layer.split(".")[:3])
for layer in vae_state_dict
if "decoder.up" in layer
}
)
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [
key
for key in down_blocks[i]
if f"down.{i}" in key and f"down.{i}.downsample" not in key
]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key
for key in up_blocks[block_id]
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def convert_ldm_bert_checkpoint(checkpoint, config):
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
def _copy_linear(hf_linear, pt_linear):
hf_linear.weight = pt_linear.weight
hf_linear.bias = pt_linear.bias
def _copy_layer(hf_layer, pt_layer):
# copy layer norms
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
# copy attn
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
# copy MLP
pt_mlp = pt_layer[1][1]
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
def _copy_layers(hf_layers, pt_layers):
for i, hf_layer in enumerate(hf_layers):
if i != 0:
i += i
pt_layer = pt_layers[i : i + 2]
_copy_layer(hf_layer, pt_layer)
hf_model = LDMBertModel(config).eval()
# copy embeds
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
hf_model.model.embed_positions.weight.data = (
checkpoint.transformer.pos_emb.emb.weight
)
# copy layer norm
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
# copy hidden layers
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
return hf_model
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[
key
]
text_model.load_state_dict(text_model_dict)
return text_model
def convert_full_checkpoint(
checkpoint_path: str, config_file, scheduler_type, extract_ema, output_path=None
):
original_config = OmegaConf.load(config_file)
checkpoint = torch.load(checkpoint_path, weights_only=False)
checkpoint = checkpoint["state_dict"]
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
if scheduler_type == "PNDM":
scheduler = PNDMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
skip_prk_steps=True,
)
elif scheduler_type == "K-LMS":
scheduler = LMSDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif scheduler_type == "Euler":
scheduler = EulerDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif scheduler_type == "EulerAncestral":
scheduler = EulerAncestralDiscreteScheduler(
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
)
elif scheduler_type == "DDIM":
scheduler = DDIMScheduler(
beta_start=beta_start,
beta_end=beta_end,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, extract_ema=extract_ema
)
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
# Convert the text model.
text_model = convert_ldm_clip_checkpoint(checkpoint)
del checkpoint
unet = UNet2DConditionModel(**unet_config)
unet.load_state_dict(converted_unet_checkpoint)
del converted_unet_checkpoint
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
del converted_vae_checkpoint
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", device_map="cpu"
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
pipe.save_pretrained(output_path)