Spaces:
Runtime error
Runtime error
Duplicate from diffusers/convert-sd-ckpt
Browse filesCo-authored-by: Anton Lozhkov <anton-l@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +279 -0
- convert.py +878 -0
- original_config.yaml +70 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Convert to Diffusers
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.9.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: diffusers/convert-sd-ckpt
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import zipfile
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import requests
|
8 |
+
from huggingface_hub import create_repo, upload_folder, whoami
|
9 |
+
|
10 |
+
from convert import convert_full_checkpoint
|
11 |
+
|
12 |
+
MODELS_DIR = "models/"
|
13 |
+
CKPT_FILE = MODELS_DIR + "model.ckpt"
|
14 |
+
HF_MODEL_DIR = MODELS_DIR + "diffusers_model"
|
15 |
+
ZIP_FILE = MODELS_DIR + "model.zip"
|
16 |
+
|
17 |
+
|
18 |
+
def download_ckpt(url, out_path):
|
19 |
+
with open(out_path, "wb") as out_file:
|
20 |
+
with requests.get(url, stream=True) as r:
|
21 |
+
r.raise_for_status()
|
22 |
+
for chunk in r.iter_content(chunk_size=8192):
|
23 |
+
out_file.write(chunk)
|
24 |
+
|
25 |
+
|
26 |
+
def zip_model(model_path, zip_path):
|
27 |
+
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as zip_file:
|
28 |
+
for root, dirs, files in os.walk(model_path):
|
29 |
+
for file in files:
|
30 |
+
zip_file.write(
|
31 |
+
os.path.join(root, file),
|
32 |
+
os.path.relpath(
|
33 |
+
os.path.join(root, file), os.path.join(model_path, "..")
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def download_checkpoint_and_config(ckpt_url, config_url):
|
39 |
+
ckpt_url = ckpt_url.strip()
|
40 |
+
config_url = config_url.strip()
|
41 |
+
|
42 |
+
if not ckpt_url.startswith("http://") and not ckpt_url.startswith("https://"):
|
43 |
+
raise ValueError("Invalid checkpoint URL")
|
44 |
+
|
45 |
+
if config_url.startswith("http://") or config_url.startswith("https://"):
|
46 |
+
response = requests.get(config_url)
|
47 |
+
response.raise_for_status()
|
48 |
+
config_file = io.BytesIO(response.content)
|
49 |
+
elif config_url != "":
|
50 |
+
raise ValueError("Invalid config URL")
|
51 |
+
else:
|
52 |
+
config_file = open("original_config.yaml", "r")
|
53 |
+
|
54 |
+
download_ckpt(ckpt_url, CKPT_FILE)
|
55 |
+
|
56 |
+
return CKPT_FILE, config_file
|
57 |
+
|
58 |
+
|
59 |
+
def convert_and_download(ckpt_url, config_url, scheduler_type, extract_ema):
|
60 |
+
shutil.rmtree(MODELS_DIR, ignore_errors=True)
|
61 |
+
os.makedirs(HF_MODEL_DIR)
|
62 |
+
|
63 |
+
ckpt_path, config_file = download_checkpoint_and_config(ckpt_url, config_url)
|
64 |
+
|
65 |
+
convert_full_checkpoint(
|
66 |
+
ckpt_path,
|
67 |
+
config_file,
|
68 |
+
scheduler_type=scheduler_type,
|
69 |
+
extract_ema=(extract_ema == "EMA"),
|
70 |
+
output_path=HF_MODEL_DIR,
|
71 |
+
)
|
72 |
+
zip_model(HF_MODEL_DIR, ZIP_FILE)
|
73 |
+
|
74 |
+
return ZIP_FILE
|
75 |
+
|
76 |
+
|
77 |
+
def convert_and_upload(
|
78 |
+
ckpt_url, config_url, scheduler_type, extract_ema, token, model_name
|
79 |
+
):
|
80 |
+
shutil.rmtree(MODELS_DIR, ignore_errors=True)
|
81 |
+
os.makedirs(HF_MODEL_DIR)
|
82 |
+
|
83 |
+
try:
|
84 |
+
ckpt_path, config_file = download_checkpoint_and_config(ckpt_url, config_url)
|
85 |
+
|
86 |
+
username = whoami(token)["name"]
|
87 |
+
repo_name = f"{username}/{model_name}"
|
88 |
+
repo_url = create_repo(repo_name, token=token, exist_ok=True)
|
89 |
+
convert_full_checkpoint(
|
90 |
+
ckpt_path,
|
91 |
+
config_file,
|
92 |
+
scheduler_type=scheduler_type,
|
93 |
+
extract_ema=(extract_ema == "EMA"),
|
94 |
+
output_path=HF_MODEL_DIR,
|
95 |
+
)
|
96 |
+
upload_folder(repo_id=repo_name, folder_path=HF_MODEL_DIR, token=token, commit_message=f"Upload diffusers weights")
|
97 |
+
except Exception as e:
|
98 |
+
return f"#### Error: {e}"
|
99 |
+
return f"#### Success! Model uploaded to [{repo_url}]({repo_url})"
|
100 |
+
|
101 |
+
|
102 |
+
TTILE_IMAGE = """
|
103 |
+
<div
|
104 |
+
style="
|
105 |
+
display: block;
|
106 |
+
margin-left: auto;
|
107 |
+
margin-right: auto;
|
108 |
+
width: 50%;
|
109 |
+
"
|
110 |
+
>
|
111 |
+
<img src="https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg"/>
|
112 |
+
</div>
|
113 |
+
"""
|
114 |
+
|
115 |
+
TITLE = """
|
116 |
+
<div
|
117 |
+
style="
|
118 |
+
display: inline-flex;
|
119 |
+
align-items: center;
|
120 |
+
text-align: center;
|
121 |
+
max-width: 1400px;
|
122 |
+
gap: 0.8rem;
|
123 |
+
font-size: 2.2rem;
|
124 |
+
"
|
125 |
+
>
|
126 |
+
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
|
127 |
+
Convert Stable Diffusion `.ckpt` files to Hugging Face Diffusers 🔥
|
128 |
+
</h1>
|
129 |
+
</div>
|
130 |
+
"""
|
131 |
+
|
132 |
+
with gr.Blocks() as interface:
|
133 |
+
gr.HTML(TTILE_IMAGE)
|
134 |
+
gr.HTML(TITLE)
|
135 |
+
gr.Markdown("We will perform all of the checkpoint surgery for you, and create a clean diffusers model!")
|
136 |
+
gr.Markdown("This converter will also remove any pickled code from third-party checkpoints.")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column(scale=50):
|
140 |
+
gr.Markdown("### 1. Paste a URL to your <model>.ckpt file")
|
141 |
+
ckpt_url = gr.Textbox(
|
142 |
+
max_lines=1,
|
143 |
+
label="URL to <model>.ckpt",
|
144 |
+
placeholder="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt",
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Column(scale=50):
|
148 |
+
gr.Markdown("### (Optional) paste a URL to your <config>.yaml file")
|
149 |
+
config_url = gr.Textbox(
|
150 |
+
max_lines=1,
|
151 |
+
label="URL to <config>.yaml",
|
152 |
+
placeholder="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-inference.yaml",
|
153 |
+
)
|
154 |
+
gr.Markdown(
|
155 |
+
"**If you don't provide a config file, we'll try to use"
|
156 |
+
" [v1-inference.yaml](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-inference.yaml).*"
|
157 |
+
)
|
158 |
+
with gr.Accordion("Advanced Settings"):
|
159 |
+
scheduler_type = gr.Dropdown(
|
160 |
+
label="Choose a scheduler type (if not sure, keep the PNDM default)",
|
161 |
+
choices=["PNDM", "K-LMS", "Euler", "EulerAncestral", "DDIM"],
|
162 |
+
value="PNDM",
|
163 |
+
)
|
164 |
+
extract_ema = gr.Radio(
|
165 |
+
label=(
|
166 |
+
"EMA weights usually yield higher quality images for inference."
|
167 |
+
" Non-EMA weights are usually better to continue fine-tuning."
|
168 |
+
),
|
169 |
+
choices=["EMA", "Non-EMA"],
|
170 |
+
value="EMA",
|
171 |
+
interactive=True,
|
172 |
+
)
|
173 |
+
|
174 |
+
gr.Markdown("### 2. Choose what to do with the converted model")
|
175 |
+
model_choice = gr.Radio(
|
176 |
+
show_label=False,
|
177 |
+
choices=[
|
178 |
+
"Download the model as an archive",
|
179 |
+
"Host the model on the Hugging Face Hub",
|
180 |
+
# "Submit a PR with the model for an existing Hub repository",
|
181 |
+
],
|
182 |
+
type="index",
|
183 |
+
value="Download the model as an archive",
|
184 |
+
interactive=True,
|
185 |
+
)
|
186 |
+
|
187 |
+
download_panel = gr.Column(visible=True)
|
188 |
+
upload_panel = gr.Column(visible=False)
|
189 |
+
# pr_panel = gr.Column(visible=False)
|
190 |
+
|
191 |
+
model_choice.change(
|
192 |
+
fn=lambda i: gr.update(visible=(i == 0)),
|
193 |
+
inputs=model_choice,
|
194 |
+
outputs=download_panel,
|
195 |
+
)
|
196 |
+
model_choice.change(
|
197 |
+
fn=lambda i: gr.update(visible=(i == 1)),
|
198 |
+
inputs=model_choice,
|
199 |
+
outputs=upload_panel,
|
200 |
+
)
|
201 |
+
# model_choice.change(
|
202 |
+
# fn=lambda i: gr.update(visible=(i == 2)),
|
203 |
+
# inputs=model_choice,
|
204 |
+
# outputs=pr_panel,
|
205 |
+
# )
|
206 |
+
|
207 |
+
with download_panel:
|
208 |
+
gr.Markdown("### 3. Convert and download")
|
209 |
+
|
210 |
+
down_btn = gr.Button("Convert")
|
211 |
+
output_file = gr.File(
|
212 |
+
label="Download the converted model",
|
213 |
+
type="binary",
|
214 |
+
interactive=False,
|
215 |
+
visible=True,
|
216 |
+
)
|
217 |
+
|
218 |
+
down_btn.click(
|
219 |
+
fn=convert_and_download,
|
220 |
+
inputs=[ckpt_url, config_url, scheduler_type, extract_ema],
|
221 |
+
outputs=output_file,
|
222 |
+
)
|
223 |
+
|
224 |
+
with upload_panel:
|
225 |
+
gr.Markdown("### 3. Convert and host on the Hub")
|
226 |
+
gr.Markdown(
|
227 |
+
"This will create a new repository if it doesn't exist yet, and upload the model to the Hugging Face Hub.\n\n"
|
228 |
+
"Paste a WRITE token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)"
|
229 |
+
" and make up a model name."
|
230 |
+
)
|
231 |
+
up_token = gr.Textbox(
|
232 |
+
max_lines=1,
|
233 |
+
label="Hugging Face token",
|
234 |
+
)
|
235 |
+
up_model_name = gr.Textbox(
|
236 |
+
max_lines=1,
|
237 |
+
label="Hub model name (e.g. `artistic-diffusion-v1`)",
|
238 |
+
placeholder="my-awesome-model",
|
239 |
+
)
|
240 |
+
|
241 |
+
upload_btn = gr.Button("Convert and upload")
|
242 |
+
with gr.Box():
|
243 |
+
output_text = gr.Markdown()
|
244 |
+
upload_btn.click(
|
245 |
+
fn=convert_and_upload,
|
246 |
+
inputs=[
|
247 |
+
ckpt_url,
|
248 |
+
config_url,
|
249 |
+
scheduler_type,
|
250 |
+
extract_ema,
|
251 |
+
up_token,
|
252 |
+
up_model_name,
|
253 |
+
],
|
254 |
+
outputs=output_text,
|
255 |
+
)
|
256 |
+
|
257 |
+
# with pr_panel:
|
258 |
+
# gr.Markdown("### 3. Convert and submit as a PR")
|
259 |
+
# gr.Markdown(
|
260 |
+
# "This will open a Pull Request on the original model repository, if it already exists on the Hub.\n\n"
|
261 |
+
# "Paste a write-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)"
|
262 |
+
# " and paste an existing model id from the Hub in the `username/model-name` form."
|
263 |
+
# )
|
264 |
+
# pr_token = gr.Textbox(
|
265 |
+
# max_lines=1,
|
266 |
+
# label="Hugging Face token",
|
267 |
+
# )
|
268 |
+
# pr_model_name = gr.Textbox(
|
269 |
+
# max_lines=1,
|
270 |
+
# label="Hub model name (e.g. `diffuser/artistic-diffusion-v1`)",
|
271 |
+
# placeholder="diffuser/my-awesome-model",
|
272 |
+
# )
|
273 |
+
#
|
274 |
+
# btn = gr.Button("Convert and open a PR")
|
275 |
+
# output = gr.Markdown(label="Output")
|
276 |
+
|
277 |
+
|
278 |
+
interface.queue(concurrency_count=1)
|
279 |
+
interface.launch()
|
convert.py
ADDED
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Conversion script for the Stable Diffusion checkpoints. """
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
try:
|
20 |
+
from omegaconf import OmegaConf
|
21 |
+
except ImportError:
|
22 |
+
raise ImportError(
|
23 |
+
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
24 |
+
)
|
25 |
+
|
26 |
+
from diffusers import (AutoencoderKL, DDIMScheduler,
|
27 |
+
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
|
28 |
+
LMSDiscreteScheduler, PNDMScheduler,
|
29 |
+
StableDiffusionPipeline, UNet2DConditionModel)
|
30 |
+
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import (
|
31 |
+
LDMBertConfig, LDMBertModel)
|
32 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
33 |
+
from transformers import AutoFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
34 |
+
|
35 |
+
|
36 |
+
def shave_segments(path, n_shave_prefix_segments=1):
|
37 |
+
"""
|
38 |
+
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
39 |
+
"""
|
40 |
+
if n_shave_prefix_segments >= 0:
|
41 |
+
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
42 |
+
else:
|
43 |
+
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
44 |
+
|
45 |
+
|
46 |
+
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
47 |
+
"""
|
48 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
49 |
+
"""
|
50 |
+
mapping = []
|
51 |
+
for old_item in old_list:
|
52 |
+
new_item = old_item.replace("in_layers.0", "norm1")
|
53 |
+
new_item = new_item.replace("in_layers.2", "conv1")
|
54 |
+
|
55 |
+
new_item = new_item.replace("out_layers.0", "norm2")
|
56 |
+
new_item = new_item.replace("out_layers.3", "conv2")
|
57 |
+
|
58 |
+
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
59 |
+
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
60 |
+
|
61 |
+
new_item = shave_segments(
|
62 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
63 |
+
)
|
64 |
+
|
65 |
+
mapping.append({"old": old_item, "new": new_item})
|
66 |
+
|
67 |
+
return mapping
|
68 |
+
|
69 |
+
|
70 |
+
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
71 |
+
"""
|
72 |
+
Updates paths inside resnets to the new naming scheme (local renaming)
|
73 |
+
"""
|
74 |
+
mapping = []
|
75 |
+
for old_item in old_list:
|
76 |
+
new_item = old_item
|
77 |
+
|
78 |
+
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
79 |
+
new_item = shave_segments(
|
80 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
81 |
+
)
|
82 |
+
|
83 |
+
mapping.append({"old": old_item, "new": new_item})
|
84 |
+
|
85 |
+
return mapping
|
86 |
+
|
87 |
+
|
88 |
+
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
89 |
+
"""
|
90 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
91 |
+
"""
|
92 |
+
mapping = []
|
93 |
+
for old_item in old_list:
|
94 |
+
new_item = old_item
|
95 |
+
|
96 |
+
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
97 |
+
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
98 |
+
|
99 |
+
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
100 |
+
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
101 |
+
|
102 |
+
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
103 |
+
|
104 |
+
mapping.append({"old": old_item, "new": new_item})
|
105 |
+
|
106 |
+
return mapping
|
107 |
+
|
108 |
+
|
109 |
+
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
110 |
+
"""
|
111 |
+
Updates paths inside attentions to the new naming scheme (local renaming)
|
112 |
+
"""
|
113 |
+
mapping = []
|
114 |
+
for old_item in old_list:
|
115 |
+
new_item = old_item
|
116 |
+
|
117 |
+
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
118 |
+
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
119 |
+
|
120 |
+
new_item = new_item.replace("q.weight", "query.weight")
|
121 |
+
new_item = new_item.replace("q.bias", "query.bias")
|
122 |
+
|
123 |
+
new_item = new_item.replace("k.weight", "key.weight")
|
124 |
+
new_item = new_item.replace("k.bias", "key.bias")
|
125 |
+
|
126 |
+
new_item = new_item.replace("v.weight", "value.weight")
|
127 |
+
new_item = new_item.replace("v.bias", "value.bias")
|
128 |
+
|
129 |
+
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
130 |
+
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
131 |
+
|
132 |
+
new_item = shave_segments(
|
133 |
+
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
134 |
+
)
|
135 |
+
|
136 |
+
mapping.append({"old": old_item, "new": new_item})
|
137 |
+
|
138 |
+
return mapping
|
139 |
+
|
140 |
+
|
141 |
+
def assign_to_checkpoint(
|
142 |
+
paths,
|
143 |
+
checkpoint,
|
144 |
+
old_checkpoint,
|
145 |
+
attention_paths_to_split=None,
|
146 |
+
additional_replacements=None,
|
147 |
+
config=None,
|
148 |
+
):
|
149 |
+
"""
|
150 |
+
This does the final conversion step: take locally converted weights and apply a global renaming
|
151 |
+
to them. It splits attention layers, and takes into account additional replacements
|
152 |
+
that may arise.
|
153 |
+
Assigns the weights to the new checkpoint.
|
154 |
+
"""
|
155 |
+
assert isinstance(
|
156 |
+
paths, list
|
157 |
+
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
158 |
+
|
159 |
+
# Splits the attention layers into three variables.
|
160 |
+
if attention_paths_to_split is not None:
|
161 |
+
for path, path_map in attention_paths_to_split.items():
|
162 |
+
old_tensor = old_checkpoint[path]
|
163 |
+
channels = old_tensor.shape[0] // 3
|
164 |
+
|
165 |
+
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
166 |
+
|
167 |
+
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
168 |
+
|
169 |
+
old_tensor = old_tensor.reshape(
|
170 |
+
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
171 |
+
)
|
172 |
+
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
173 |
+
|
174 |
+
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
175 |
+
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
176 |
+
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
177 |
+
|
178 |
+
for path in paths:
|
179 |
+
new_path = path["new"]
|
180 |
+
|
181 |
+
# These have already been assigned
|
182 |
+
if (
|
183 |
+
attention_paths_to_split is not None
|
184 |
+
and new_path in attention_paths_to_split
|
185 |
+
):
|
186 |
+
continue
|
187 |
+
|
188 |
+
# Global renaming happens here
|
189 |
+
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
190 |
+
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
191 |
+
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
192 |
+
|
193 |
+
if additional_replacements is not None:
|
194 |
+
for replacement in additional_replacements:
|
195 |
+
new_path = new_path.replace(replacement["old"], replacement["new"])
|
196 |
+
|
197 |
+
# proj_attn.weight has to be converted from conv 1D to linear
|
198 |
+
if "proj_attn.weight" in new_path:
|
199 |
+
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
200 |
+
else:
|
201 |
+
checkpoint[new_path] = old_checkpoint[path["old"]]
|
202 |
+
|
203 |
+
|
204 |
+
def conv_attn_to_linear(checkpoint):
|
205 |
+
keys = list(checkpoint.keys())
|
206 |
+
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
207 |
+
for key in keys:
|
208 |
+
if ".".join(key.split(".")[-2:]) in attn_keys:
|
209 |
+
if checkpoint[key].ndim > 2:
|
210 |
+
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
211 |
+
elif "proj_attn.weight" in key:
|
212 |
+
if checkpoint[key].ndim > 2:
|
213 |
+
checkpoint[key] = checkpoint[key][:, :, 0]
|
214 |
+
|
215 |
+
|
216 |
+
def create_unet_diffusers_config(original_config):
|
217 |
+
"""
|
218 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
219 |
+
"""
|
220 |
+
unet_params = original_config.model.params.unet_config.params
|
221 |
+
|
222 |
+
block_out_channels = [
|
223 |
+
unet_params.model_channels * mult for mult in unet_params.channel_mult
|
224 |
+
]
|
225 |
+
|
226 |
+
down_block_types = []
|
227 |
+
resolution = 1
|
228 |
+
for i in range(len(block_out_channels)):
|
229 |
+
block_type = (
|
230 |
+
"CrossAttnDownBlock2D"
|
231 |
+
if resolution in unet_params.attention_resolutions
|
232 |
+
else "DownBlock2D"
|
233 |
+
)
|
234 |
+
down_block_types.append(block_type)
|
235 |
+
if i != len(block_out_channels) - 1:
|
236 |
+
resolution *= 2
|
237 |
+
|
238 |
+
up_block_types = []
|
239 |
+
for i in range(len(block_out_channels)):
|
240 |
+
block_type = (
|
241 |
+
"CrossAttnUpBlock2D"
|
242 |
+
if resolution in unet_params.attention_resolutions
|
243 |
+
else "UpBlock2D"
|
244 |
+
)
|
245 |
+
up_block_types.append(block_type)
|
246 |
+
resolution //= 2
|
247 |
+
|
248 |
+
config = dict(
|
249 |
+
sample_size=unet_params.image_size,
|
250 |
+
in_channels=unet_params.in_channels,
|
251 |
+
out_channels=unet_params.out_channels,
|
252 |
+
down_block_types=tuple(down_block_types),
|
253 |
+
up_block_types=tuple(up_block_types),
|
254 |
+
block_out_channels=tuple(block_out_channels),
|
255 |
+
layers_per_block=unet_params.num_res_blocks,
|
256 |
+
cross_attention_dim=unet_params.context_dim,
|
257 |
+
attention_head_dim=unet_params.num_heads,
|
258 |
+
)
|
259 |
+
|
260 |
+
return config
|
261 |
+
|
262 |
+
|
263 |
+
def create_vae_diffusers_config(original_config):
|
264 |
+
"""
|
265 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
266 |
+
"""
|
267 |
+
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
268 |
+
_ = original_config.model.params.first_stage_config.params.embed_dim
|
269 |
+
|
270 |
+
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
271 |
+
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
272 |
+
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
273 |
+
|
274 |
+
config = dict(
|
275 |
+
sample_size=vae_params.resolution,
|
276 |
+
in_channels=vae_params.in_channels,
|
277 |
+
out_channels=vae_params.out_ch,
|
278 |
+
down_block_types=tuple(down_block_types),
|
279 |
+
up_block_types=tuple(up_block_types),
|
280 |
+
block_out_channels=tuple(block_out_channels),
|
281 |
+
latent_channels=vae_params.z_channels,
|
282 |
+
layers_per_block=vae_params.num_res_blocks,
|
283 |
+
)
|
284 |
+
return config
|
285 |
+
|
286 |
+
|
287 |
+
def create_diffusers_schedular(original_config):
|
288 |
+
schedular = DDIMScheduler(
|
289 |
+
num_train_timesteps=original_config.model.params.timesteps,
|
290 |
+
beta_start=original_config.model.params.linear_start,
|
291 |
+
beta_end=original_config.model.params.linear_end,
|
292 |
+
beta_schedule="scaled_linear",
|
293 |
+
)
|
294 |
+
return schedular
|
295 |
+
|
296 |
+
|
297 |
+
def create_ldm_bert_config(original_config):
|
298 |
+
bert_params = original_config.model.parms.cond_stage_config.params
|
299 |
+
config = LDMBertConfig(
|
300 |
+
d_model=bert_params.n_embed,
|
301 |
+
encoder_layers=bert_params.n_layer,
|
302 |
+
encoder_ffn_dim=bert_params.n_embed * 4,
|
303 |
+
)
|
304 |
+
return config
|
305 |
+
|
306 |
+
|
307 |
+
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False):
|
308 |
+
"""
|
309 |
+
Takes a state dict and a config, and returns a converted checkpoint.
|
310 |
+
"""
|
311 |
+
|
312 |
+
# extract state_dict for UNet
|
313 |
+
unet_state_dict = {}
|
314 |
+
keys = list(checkpoint.keys())
|
315 |
+
|
316 |
+
unet_key = "model.diffusion_model."
|
317 |
+
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
318 |
+
if sum(k.startswith("model_ema") for k in keys) > 100:
|
319 |
+
print(f"Checkpoint has both EMA and non-EMA weights.")
|
320 |
+
if extract_ema:
|
321 |
+
print(
|
322 |
+
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
323 |
+
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
324 |
+
)
|
325 |
+
for key in keys:
|
326 |
+
if key.startswith("model.diffusion_model"):
|
327 |
+
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
328 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(
|
329 |
+
flat_ema_key
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
print(
|
333 |
+
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
334 |
+
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
335 |
+
)
|
336 |
+
|
337 |
+
for key in keys:
|
338 |
+
if key.startswith(unet_key):
|
339 |
+
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
340 |
+
|
341 |
+
new_checkpoint = {}
|
342 |
+
|
343 |
+
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[
|
344 |
+
"time_embed.0.weight"
|
345 |
+
]
|
346 |
+
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[
|
347 |
+
"time_embed.0.bias"
|
348 |
+
]
|
349 |
+
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[
|
350 |
+
"time_embed.2.weight"
|
351 |
+
]
|
352 |
+
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[
|
353 |
+
"time_embed.2.bias"
|
354 |
+
]
|
355 |
+
|
356 |
+
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
357 |
+
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
358 |
+
|
359 |
+
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
360 |
+
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
361 |
+
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
362 |
+
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
363 |
+
|
364 |
+
# Retrieves the keys for the input blocks only
|
365 |
+
num_input_blocks = len(
|
366 |
+
{
|
367 |
+
".".join(layer.split(".")[:2])
|
368 |
+
for layer in unet_state_dict
|
369 |
+
if "input_blocks" in layer
|
370 |
+
}
|
371 |
+
)
|
372 |
+
input_blocks = {
|
373 |
+
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
374 |
+
for layer_id in range(num_input_blocks)
|
375 |
+
}
|
376 |
+
|
377 |
+
# Retrieves the keys for the middle blocks only
|
378 |
+
num_middle_blocks = len(
|
379 |
+
{
|
380 |
+
".".join(layer.split(".")[:2])
|
381 |
+
for layer in unet_state_dict
|
382 |
+
if "middle_block" in layer
|
383 |
+
}
|
384 |
+
)
|
385 |
+
middle_blocks = {
|
386 |
+
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
387 |
+
for layer_id in range(num_middle_blocks)
|
388 |
+
}
|
389 |
+
|
390 |
+
# Retrieves the keys for the output blocks only
|
391 |
+
num_output_blocks = len(
|
392 |
+
{
|
393 |
+
".".join(layer.split(".")[:2])
|
394 |
+
for layer in unet_state_dict
|
395 |
+
if "output_blocks" in layer
|
396 |
+
}
|
397 |
+
)
|
398 |
+
output_blocks = {
|
399 |
+
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
400 |
+
for layer_id in range(num_output_blocks)
|
401 |
+
}
|
402 |
+
|
403 |
+
for i in range(1, num_input_blocks):
|
404 |
+
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
405 |
+
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
406 |
+
|
407 |
+
resnets = [
|
408 |
+
key
|
409 |
+
for key in input_blocks[i]
|
410 |
+
if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
411 |
+
]
|
412 |
+
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
413 |
+
|
414 |
+
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
415 |
+
new_checkpoint[
|
416 |
+
f"down_blocks.{block_id}.downsamplers.0.conv.weight"
|
417 |
+
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight")
|
418 |
+
new_checkpoint[
|
419 |
+
f"down_blocks.{block_id}.downsamplers.0.conv.bias"
|
420 |
+
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias")
|
421 |
+
|
422 |
+
paths = renew_resnet_paths(resnets)
|
423 |
+
meta_path = {
|
424 |
+
"old": f"input_blocks.{i}.0",
|
425 |
+
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}",
|
426 |
+
}
|
427 |
+
assign_to_checkpoint(
|
428 |
+
paths,
|
429 |
+
new_checkpoint,
|
430 |
+
unet_state_dict,
|
431 |
+
additional_replacements=[meta_path],
|
432 |
+
config=config,
|
433 |
+
)
|
434 |
+
|
435 |
+
if len(attentions):
|
436 |
+
paths = renew_attention_paths(attentions)
|
437 |
+
meta_path = {
|
438 |
+
"old": f"input_blocks.{i}.1",
|
439 |
+
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
|
440 |
+
}
|
441 |
+
assign_to_checkpoint(
|
442 |
+
paths,
|
443 |
+
new_checkpoint,
|
444 |
+
unet_state_dict,
|
445 |
+
additional_replacements=[meta_path],
|
446 |
+
config=config,
|
447 |
+
)
|
448 |
+
|
449 |
+
resnet_0 = middle_blocks[0]
|
450 |
+
attentions = middle_blocks[1]
|
451 |
+
resnet_1 = middle_blocks[2]
|
452 |
+
|
453 |
+
resnet_0_paths = renew_resnet_paths(resnet_0)
|
454 |
+
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
455 |
+
|
456 |
+
resnet_1_paths = renew_resnet_paths(resnet_1)
|
457 |
+
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
458 |
+
|
459 |
+
attentions_paths = renew_attention_paths(attentions)
|
460 |
+
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
461 |
+
assign_to_checkpoint(
|
462 |
+
attentions_paths,
|
463 |
+
new_checkpoint,
|
464 |
+
unet_state_dict,
|
465 |
+
additional_replacements=[meta_path],
|
466 |
+
config=config,
|
467 |
+
)
|
468 |
+
|
469 |
+
for i in range(num_output_blocks):
|
470 |
+
block_id = i // (config["layers_per_block"] + 1)
|
471 |
+
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
472 |
+
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
473 |
+
output_block_list = {}
|
474 |
+
|
475 |
+
for layer in output_block_layers:
|
476 |
+
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
477 |
+
if layer_id in output_block_list:
|
478 |
+
output_block_list[layer_id].append(layer_name)
|
479 |
+
else:
|
480 |
+
output_block_list[layer_id] = [layer_name]
|
481 |
+
|
482 |
+
if len(output_block_list) > 1:
|
483 |
+
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
484 |
+
attentions = [
|
485 |
+
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key
|
486 |
+
]
|
487 |
+
|
488 |
+
resnet_0_paths = renew_resnet_paths(resnets)
|
489 |
+
paths = renew_resnet_paths(resnets)
|
490 |
+
|
491 |
+
meta_path = {
|
492 |
+
"old": f"output_blocks.{i}.0",
|
493 |
+
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}",
|
494 |
+
}
|
495 |
+
assign_to_checkpoint(
|
496 |
+
paths,
|
497 |
+
new_checkpoint,
|
498 |
+
unet_state_dict,
|
499 |
+
additional_replacements=[meta_path],
|
500 |
+
config=config,
|
501 |
+
)
|
502 |
+
|
503 |
+
if ["conv.weight", "conv.bias"] in output_block_list.values():
|
504 |
+
index = list(output_block_list.values()).index(
|
505 |
+
["conv.weight", "conv.bias"]
|
506 |
+
)
|
507 |
+
new_checkpoint[
|
508 |
+
f"up_blocks.{block_id}.upsamplers.0.conv.weight"
|
509 |
+
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"]
|
510 |
+
new_checkpoint[
|
511 |
+
f"up_blocks.{block_id}.upsamplers.0.conv.bias"
|
512 |
+
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"]
|
513 |
+
|
514 |
+
# Clear attentions as they have been attributed above.
|
515 |
+
if len(attentions) == 2:
|
516 |
+
attentions = []
|
517 |
+
|
518 |
+
if len(attentions):
|
519 |
+
paths = renew_attention_paths(attentions)
|
520 |
+
meta_path = {
|
521 |
+
"old": f"output_blocks.{i}.1",
|
522 |
+
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
523 |
+
}
|
524 |
+
assign_to_checkpoint(
|
525 |
+
paths,
|
526 |
+
new_checkpoint,
|
527 |
+
unet_state_dict,
|
528 |
+
additional_replacements=[meta_path],
|
529 |
+
config=config,
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
resnet_0_paths = renew_resnet_paths(
|
533 |
+
output_block_layers, n_shave_prefix_segments=1
|
534 |
+
)
|
535 |
+
for path in resnet_0_paths:
|
536 |
+
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
537 |
+
new_path = ".".join(
|
538 |
+
[
|
539 |
+
"up_blocks",
|
540 |
+
str(block_id),
|
541 |
+
"resnets",
|
542 |
+
str(layer_in_block_id),
|
543 |
+
path["new"],
|
544 |
+
]
|
545 |
+
)
|
546 |
+
|
547 |
+
new_checkpoint[new_path] = unet_state_dict[old_path]
|
548 |
+
|
549 |
+
return new_checkpoint
|
550 |
+
|
551 |
+
|
552 |
+
def convert_ldm_vae_checkpoint(checkpoint, config):
|
553 |
+
# extract state dict for VAE
|
554 |
+
vae_state_dict = {}
|
555 |
+
vae_key = "first_stage_model."
|
556 |
+
keys = list(checkpoint.keys())
|
557 |
+
for key in keys:
|
558 |
+
if key.startswith(vae_key):
|
559 |
+
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
560 |
+
|
561 |
+
new_checkpoint = {}
|
562 |
+
|
563 |
+
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
564 |
+
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
565 |
+
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
566 |
+
"encoder.conv_out.weight"
|
567 |
+
]
|
568 |
+
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
569 |
+
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
570 |
+
"encoder.norm_out.weight"
|
571 |
+
]
|
572 |
+
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
573 |
+
"encoder.norm_out.bias"
|
574 |
+
]
|
575 |
+
|
576 |
+
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
577 |
+
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
578 |
+
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
579 |
+
"decoder.conv_out.weight"
|
580 |
+
]
|
581 |
+
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
582 |
+
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
583 |
+
"decoder.norm_out.weight"
|
584 |
+
]
|
585 |
+
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
586 |
+
"decoder.norm_out.bias"
|
587 |
+
]
|
588 |
+
|
589 |
+
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
590 |
+
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
591 |
+
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
592 |
+
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
593 |
+
|
594 |
+
# Retrieves the keys for the encoder down blocks only
|
595 |
+
num_down_blocks = len(
|
596 |
+
{
|
597 |
+
".".join(layer.split(".")[:3])
|
598 |
+
for layer in vae_state_dict
|
599 |
+
if "encoder.down" in layer
|
600 |
+
}
|
601 |
+
)
|
602 |
+
down_blocks = {
|
603 |
+
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
604 |
+
for layer_id in range(num_down_blocks)
|
605 |
+
}
|
606 |
+
|
607 |
+
# Retrieves the keys for the decoder up blocks only
|
608 |
+
num_up_blocks = len(
|
609 |
+
{
|
610 |
+
".".join(layer.split(".")[:3])
|
611 |
+
for layer in vae_state_dict
|
612 |
+
if "decoder.up" in layer
|
613 |
+
}
|
614 |
+
)
|
615 |
+
up_blocks = {
|
616 |
+
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
617 |
+
for layer_id in range(num_up_blocks)
|
618 |
+
}
|
619 |
+
|
620 |
+
for i in range(num_down_blocks):
|
621 |
+
resnets = [
|
622 |
+
key
|
623 |
+
for key in down_blocks[i]
|
624 |
+
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
625 |
+
]
|
626 |
+
|
627 |
+
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
628 |
+
new_checkpoint[
|
629 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
630 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
631 |
+
new_checkpoint[
|
632 |
+
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
633 |
+
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
634 |
+
|
635 |
+
paths = renew_vae_resnet_paths(resnets)
|
636 |
+
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
637 |
+
assign_to_checkpoint(
|
638 |
+
paths,
|
639 |
+
new_checkpoint,
|
640 |
+
vae_state_dict,
|
641 |
+
additional_replacements=[meta_path],
|
642 |
+
config=config,
|
643 |
+
)
|
644 |
+
|
645 |
+
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
646 |
+
num_mid_res_blocks = 2
|
647 |
+
for i in range(1, num_mid_res_blocks + 1):
|
648 |
+
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
649 |
+
|
650 |
+
paths = renew_vae_resnet_paths(resnets)
|
651 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
652 |
+
assign_to_checkpoint(
|
653 |
+
paths,
|
654 |
+
new_checkpoint,
|
655 |
+
vae_state_dict,
|
656 |
+
additional_replacements=[meta_path],
|
657 |
+
config=config,
|
658 |
+
)
|
659 |
+
|
660 |
+
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
661 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
662 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
663 |
+
assign_to_checkpoint(
|
664 |
+
paths,
|
665 |
+
new_checkpoint,
|
666 |
+
vae_state_dict,
|
667 |
+
additional_replacements=[meta_path],
|
668 |
+
config=config,
|
669 |
+
)
|
670 |
+
conv_attn_to_linear(new_checkpoint)
|
671 |
+
|
672 |
+
for i in range(num_up_blocks):
|
673 |
+
block_id = num_up_blocks - 1 - i
|
674 |
+
resnets = [
|
675 |
+
key
|
676 |
+
for key in up_blocks[block_id]
|
677 |
+
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
678 |
+
]
|
679 |
+
|
680 |
+
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
681 |
+
new_checkpoint[
|
682 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
683 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
684 |
+
new_checkpoint[
|
685 |
+
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
686 |
+
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
687 |
+
|
688 |
+
paths = renew_vae_resnet_paths(resnets)
|
689 |
+
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
690 |
+
assign_to_checkpoint(
|
691 |
+
paths,
|
692 |
+
new_checkpoint,
|
693 |
+
vae_state_dict,
|
694 |
+
additional_replacements=[meta_path],
|
695 |
+
config=config,
|
696 |
+
)
|
697 |
+
|
698 |
+
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
699 |
+
num_mid_res_blocks = 2
|
700 |
+
for i in range(1, num_mid_res_blocks + 1):
|
701 |
+
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
702 |
+
|
703 |
+
paths = renew_vae_resnet_paths(resnets)
|
704 |
+
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
705 |
+
assign_to_checkpoint(
|
706 |
+
paths,
|
707 |
+
new_checkpoint,
|
708 |
+
vae_state_dict,
|
709 |
+
additional_replacements=[meta_path],
|
710 |
+
config=config,
|
711 |
+
)
|
712 |
+
|
713 |
+
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
714 |
+
paths = renew_vae_attention_paths(mid_attentions)
|
715 |
+
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
716 |
+
assign_to_checkpoint(
|
717 |
+
paths,
|
718 |
+
new_checkpoint,
|
719 |
+
vae_state_dict,
|
720 |
+
additional_replacements=[meta_path],
|
721 |
+
config=config,
|
722 |
+
)
|
723 |
+
conv_attn_to_linear(new_checkpoint)
|
724 |
+
return new_checkpoint
|
725 |
+
|
726 |
+
|
727 |
+
def convert_ldm_bert_checkpoint(checkpoint, config):
|
728 |
+
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
729 |
+
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
730 |
+
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
731 |
+
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
732 |
+
|
733 |
+
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
734 |
+
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
735 |
+
|
736 |
+
def _copy_linear(hf_linear, pt_linear):
|
737 |
+
hf_linear.weight = pt_linear.weight
|
738 |
+
hf_linear.bias = pt_linear.bias
|
739 |
+
|
740 |
+
def _copy_layer(hf_layer, pt_layer):
|
741 |
+
# copy layer norms
|
742 |
+
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
743 |
+
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
744 |
+
|
745 |
+
# copy attn
|
746 |
+
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
747 |
+
|
748 |
+
# copy MLP
|
749 |
+
pt_mlp = pt_layer[1][1]
|
750 |
+
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
751 |
+
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
752 |
+
|
753 |
+
def _copy_layers(hf_layers, pt_layers):
|
754 |
+
for i, hf_layer in enumerate(hf_layers):
|
755 |
+
if i != 0:
|
756 |
+
i += i
|
757 |
+
pt_layer = pt_layers[i : i + 2]
|
758 |
+
_copy_layer(hf_layer, pt_layer)
|
759 |
+
|
760 |
+
hf_model = LDMBertModel(config).eval()
|
761 |
+
|
762 |
+
# copy embeds
|
763 |
+
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
764 |
+
hf_model.model.embed_positions.weight.data = (
|
765 |
+
checkpoint.transformer.pos_emb.emb.weight
|
766 |
+
)
|
767 |
+
|
768 |
+
# copy layer norm
|
769 |
+
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
770 |
+
|
771 |
+
# copy hidden layers
|
772 |
+
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
773 |
+
|
774 |
+
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
775 |
+
|
776 |
+
return hf_model
|
777 |
+
|
778 |
+
|
779 |
+
def convert_ldm_clip_checkpoint(checkpoint):
|
780 |
+
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
781 |
+
|
782 |
+
keys = list(checkpoint.keys())
|
783 |
+
|
784 |
+
text_model_dict = {}
|
785 |
+
|
786 |
+
for key in keys:
|
787 |
+
if key.startswith("cond_stage_model.transformer"):
|
788 |
+
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[
|
789 |
+
key
|
790 |
+
]
|
791 |
+
|
792 |
+
text_model.load_state_dict(text_model_dict)
|
793 |
+
|
794 |
+
return text_model
|
795 |
+
|
796 |
+
|
797 |
+
def convert_full_checkpoint(
|
798 |
+
checkpoint_path: str, config_file, scheduler_type, extract_ema, output_path=None
|
799 |
+
):
|
800 |
+
original_config = OmegaConf.load(config_file)
|
801 |
+
checkpoint = torch.load(checkpoint_path, weights_only=False)
|
802 |
+
checkpoint = checkpoint["state_dict"]
|
803 |
+
|
804 |
+
num_train_timesteps = original_config.model.params.timesteps
|
805 |
+
beta_start = original_config.model.params.linear_start
|
806 |
+
beta_end = original_config.model.params.linear_end
|
807 |
+
if scheduler_type == "PNDM":
|
808 |
+
scheduler = PNDMScheduler(
|
809 |
+
beta_end=beta_end,
|
810 |
+
beta_schedule="scaled_linear",
|
811 |
+
beta_start=beta_start,
|
812 |
+
num_train_timesteps=num_train_timesteps,
|
813 |
+
skip_prk_steps=True,
|
814 |
+
)
|
815 |
+
elif scheduler_type == "K-LMS":
|
816 |
+
scheduler = LMSDiscreteScheduler(
|
817 |
+
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
|
818 |
+
)
|
819 |
+
elif scheduler_type == "Euler":
|
820 |
+
scheduler = EulerDiscreteScheduler(
|
821 |
+
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
|
822 |
+
)
|
823 |
+
elif scheduler_type == "EulerAncestral":
|
824 |
+
scheduler = EulerAncestralDiscreteScheduler(
|
825 |
+
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear"
|
826 |
+
)
|
827 |
+
elif scheduler_type == "DDIM":
|
828 |
+
scheduler = DDIMScheduler(
|
829 |
+
beta_start=beta_start,
|
830 |
+
beta_end=beta_end,
|
831 |
+
beta_schedule="scaled_linear",
|
832 |
+
clip_sample=False,
|
833 |
+
set_alpha_to_one=False,
|
834 |
+
)
|
835 |
+
else:
|
836 |
+
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
837 |
+
|
838 |
+
# Convert the UNet2DConditionModel model.
|
839 |
+
unet_config = create_unet_diffusers_config(original_config)
|
840 |
+
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
841 |
+
checkpoint, unet_config, extract_ema=extract_ema
|
842 |
+
)
|
843 |
+
|
844 |
+
# Convert the VAE model.
|
845 |
+
vae_config = create_vae_diffusers_config(original_config)
|
846 |
+
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
847 |
+
|
848 |
+
# Convert the text model.
|
849 |
+
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
850 |
+
|
851 |
+
del checkpoint
|
852 |
+
|
853 |
+
unet = UNet2DConditionModel(**unet_config)
|
854 |
+
unet.load_state_dict(converted_unet_checkpoint)
|
855 |
+
del converted_unet_checkpoint
|
856 |
+
|
857 |
+
vae = AutoencoderKL(**vae_config)
|
858 |
+
vae.load_state_dict(converted_vae_checkpoint)
|
859 |
+
del converted_vae_checkpoint
|
860 |
+
|
861 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
862 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
863 |
+
"CompVis/stable-diffusion-safety-checker", device_map="auto"
|
864 |
+
)
|
865 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
866 |
+
"CompVis/stable-diffusion-safety-checker"
|
867 |
+
)
|
868 |
+
pipe = StableDiffusionPipeline(
|
869 |
+
vae=vae,
|
870 |
+
text_encoder=text_model,
|
871 |
+
tokenizer=tokenizer,
|
872 |
+
unet=unet,
|
873 |
+
scheduler=scheduler,
|
874 |
+
safety_checker=safety_checker,
|
875 |
+
feature_extractor=feature_extractor,
|
876 |
+
)
|
877 |
+
|
878 |
+
pipe.save_pretrained(output_path)
|
original_config.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OmegaConf
|
2 |
+
pytorch_lightning
|
3 |
+
accelerate
|
4 |
+
diffusers[torch]
|
5 |
+
transformers
|
6 |
+
scipy
|