Spaces:
Runtime error
Runtime error
base model
Browse files- app.py +24 -29
- app_old.py +28 -23
- rag.py +2 -2
app.py
CHANGED
@@ -1,16 +1,30 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
10 |
-
client = InferenceClient(model_name)
|
11 |
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def respond(
|
16 |
message,
|
@@ -22,31 +36,12 @@ def respond(
|
|
22 |
):
|
23 |
messages = [{"role": "system", "content": system_message}]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
if val[1]:
|
29 |
-
messages.append({"role": "assistant", "content": val[1]})
|
30 |
-
|
31 |
-
messages.append({"role": "user", "content": message})
|
32 |
-
|
33 |
-
response = ""
|
34 |
-
|
35 |
-
for message in client.chat_completion(
|
36 |
-
messages,
|
37 |
-
max_tokens=max_tokens,
|
38 |
-
stream=True,
|
39 |
-
temperature=temperature,
|
40 |
-
top_p=top_p,
|
41 |
-
):
|
42 |
-
token = message.choices[0].delta.content
|
43 |
|
44 |
-
|
45 |
-
yield response
|
46 |
|
47 |
-
"""
|
48 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
49 |
-
"""
|
50 |
demo = gr.ChatInterface(
|
51 |
respond,
|
52 |
additional_inputs=[
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from inference import get_bot_response
|
4 |
+
from rag import get_context
|
5 |
+
from config import config
|
6 |
from huggingface_hub import InferenceClient
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
|
10 |
|
11 |
|
12 |
+
client = InferenceClient(model_name)
|
13 |
+
print("tokenizer start loading")
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
15 |
+
print("tokenizer loaded")
|
16 |
+
print("model start loading")
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
18 |
+
device_map="auto",
|
19 |
+
trust_remote_code=False,
|
20 |
+
revision="main")
|
21 |
+
print("model loaded")
|
22 |
+
|
23 |
+
# model = AutoModelForCausalLM.from_pretrained(config["model_checkpoint"],
|
24 |
+
# device_map="auto",
|
25 |
+
# trust_remote_code=False,
|
26 |
+
# revision="main")
|
27 |
+
|
28 |
|
29 |
def respond(
|
30 |
message,
|
|
|
36 |
):
|
37 |
messages = [{"role": "system", "content": system_message}]
|
38 |
|
39 |
+
request = message
|
40 |
+
context = get_context(request, config["top_k"])
|
41 |
+
response = get_bot_response(request, context, model, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
return response
|
|
|
44 |
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
app_old.py
CHANGED
@@ -1,30 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from inference import get_bot_response
|
4 |
-
from rag import get_context
|
5 |
-
from config import config
|
6 |
from huggingface_hub import InferenceClient
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
10 |
-
|
11 |
-
|
12 |
client = InferenceClient(model_name)
|
13 |
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
15 |
-
|
16 |
-
print("model start loading")
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,
|
18 |
-
device_map="auto",
|
19 |
-
trust_remote_code=False,
|
20 |
-
revision="main")
|
21 |
-
print("model loaded")
|
22 |
-
|
23 |
-
# model = AutoModelForCausalLM.from_pretrained(config["model_checkpoint"],
|
24 |
-
# device_map="auto",
|
25 |
-
# trust_remote_code=False,
|
26 |
-
# revision="main")
|
27 |
|
|
|
28 |
|
29 |
def respond(
|
30 |
message,
|
@@ -36,12 +22,31 @@ def respond(
|
|
36 |
):
|
37 |
messages = [{"role": "system", "content": system_message}]
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
44 |
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
|
|
|
10 |
client = InferenceClient(model_name)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
print("test")
|
14 |
|
15 |
def respond(
|
16 |
message,
|
|
|
22 |
):
|
23 |
messages = [{"role": "system", "content": system_message}]
|
24 |
|
25 |
+
for val in history:
|
26 |
+
if val[0]:
|
27 |
+
messages.append({"role": "user", "content": val[0]})
|
28 |
+
if val[1]:
|
29 |
+
messages.append({"role": "assistant", "content": val[1]})
|
30 |
+
|
31 |
+
messages.append({"role": "user", "content": message})
|
32 |
+
|
33 |
+
response = ""
|
34 |
+
|
35 |
+
for message in client.chat_completion(
|
36 |
+
messages,
|
37 |
+
max_tokens=max_tokens,
|
38 |
+
stream=True,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
):
|
42 |
+
token = message.choices[0].delta.content
|
43 |
|
44 |
+
response += token
|
45 |
+
yield response
|
46 |
|
47 |
+
"""
|
48 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
49 |
+
"""
|
50 |
demo = gr.ChatInterface(
|
51 |
respond,
|
52 |
additional_inputs=[
|
rag.py
CHANGED
@@ -5,7 +5,7 @@ from llama_index.core.query_engine import RetrieverQueryEngine
|
|
5 |
from llama_index.core.postprocessor import SimilarityPostprocessor
|
6 |
|
7 |
from config import config
|
8 |
-
|
9 |
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
10 |
|
11 |
Settings.llm = None
|
@@ -14,7 +14,7 @@ Settings.chunk_overlap = config["chunk_overlap"]
|
|
14 |
|
15 |
documents = SimpleDirectoryReader("rag_data").load_data()
|
16 |
index = VectorStoreIndex.from_documents(documents)
|
17 |
-
|
18 |
def get_context(query, top_k = 3):
|
19 |
retriever = VectorIndexRetriever(
|
20 |
index=index,
|
|
|
5 |
from llama_index.core.postprocessor import SimilarityPostprocessor
|
6 |
|
7 |
from config import config
|
8 |
+
print("rag start loading")
|
9 |
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
10 |
|
11 |
Settings.llm = None
|
|
|
14 |
|
15 |
documents = SimpleDirectoryReader("rag_data").load_data()
|
16 |
index = VectorStoreIndex.from_documents(documents)
|
17 |
+
print("rag loaded")
|
18 |
def get_context(query, top_k = 3):
|
19 |
retriever = VectorIndexRetriever(
|
20 |
index=index,
|