demo / app.py
Kroy's picture
Upload 5 files
6e91927
raw
history blame
5.02 kB
from fastapi import FastAPI
import os
from typing import Any, Union,Dict, List
import numpy as np
import io
import base64
import requests
import cv2
from PIL import Image
# Create a new FastAPI app instance
app = FastAPI()
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
weightsPath = os.path.sep.join(["face_detector",
"res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a
# string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
# containing the generated text under the key "output"
args = {
"method": "simple",
"blocks": 20,
"confidence": 0.5
}
def anonymize_face_simple(image, factor=3.0):
# automatically determine the size of the blurring kernel based
# on the spatial dimensions of the input image
(h, w) = image.shape[:2]
kW = int(w / factor)
kH = int(h / factor)
# ensure the width of the kernel is odd
if kW % 2 == 0:
kW -= 1
# ensure the height of the kernel is odd
if kH % 2 == 0:
kH -= 1
# apply a Gaussian blur to the input image using our computed
# kernel size
return cv2.GaussianBlur(image, (kW, kH), 0)
def anonymize_face_pixelate(image, blocks=3):
# divide the input image into NxN blocks
(h, w) = image.shape[:2]
xSteps = np.linspace(0, w, blocks + 1, dtype="int")
ySteps = np.linspace(0, h, blocks + 1, dtype="int")
# loop over the blocks in both the x and y direction
for i in range(1, len(ySteps)):
for j in range(1, len(xSteps)):
# compute the starting and ending (x, y)-coordinates
# for the current block
startX = xSteps[j - 1]
startY = ySteps[i - 1]
endX = xSteps[j]
endY = ySteps[i]
# extract the ROI using NumPy array slicing, compute the
# mean of the ROI, and then draw a rectangle with the
# mean RGB values over the ROI in the original image
roi = image[startY:endY, startX:endX]
(B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
cv2.rectangle(image, (startX, startY), (endX, endY),
(B, G, R), -1)
# return the pixelated blurred image
return image
@app.get("/generate")
def generate(path: str):
"""
Using the text summarization pipeline from `transformers`, summerize text
from the given input text. The model used is `philschmid/bart-large-cnn-samsum`, which
can be found [here](<https://huggingface.co/philschmid/bart-large-cnn-samsum>).
"""
r = requests.get(path, stream=True)
img = Image.open(io.BytesIO(r.content)).convert('RGB')
open_cv_image = np.array(img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy() # numpy array (width, hight, 3)
image = open_cv_image # numpy array (width, hight, 3)
orig = image.copy()
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
logger.info("computing face detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is greater
# than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI
face = image[startY:endY, startX:endX]
# check to see if we are applying the "simple" face blurring
# method
if args["method"] == "simple":
face = anonymize_face_simple(face, factor=3.0)
# otherwise, we must be applying the "pixelated" face
# anonymization method
else:
face = anonymize_face_pixelate(face,blocks=args["blocks"])
# store the blurred face in the output image
image[startY:endY, startX:endX] = face
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
img = Image.fromarray(image)
im_file = io.BytesIO()
img.save(im_file, format="PNG")
im_bytes = base64.b64encode(im_file.getvalue()).decode("utf-8")
# Return the generated text in a JSON response
return {"output": im_bytes}