File size: 18,199 Bytes
3be620b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
from statistics import mode
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import Model, Sequential
from tensorflow.python.keras.layers import Dense, LSTMCell, RNN, Conv2D, Conv2DTranspose
from tensorflow.keras.layers import BatchNormalization, TimeDistributed
from tensorflow.python.keras.layers.advanced_activations import LeakyReLU
from tensorflow.keras.layers import Activation

# from tensorflow_probability.python.layers.dense_variational import (
#     DenseReparameterization,
# )
# import tensorflow_probability as tfp
from tensorflow.keras.losses import Loss


class KLCriterion(Loss):
    def call(self, y_true, y_pred):
        (mu1, logvar1), (mu2, logvar2) = y_true, y_pred

        """KL( N(mu_1, sigma2_1) || N(mu_2, sigma2_2))"""
        sigma1 = tf.exp(tf.math.multiply(logvar1, 0.5))
        sigma2 = tf.exp(tf.math.multiply(logvar2, 0.5))

        kld = (
            tf.math.log(sigma2 / sigma1)
            + (tf.exp(logvar1) + tf.square(mu1 - mu2)) / (2 * tf.exp(logvar2))
            - 0.5
        )
        return tf.reduce_sum(kld) / 22


class Encoder(Model):
    def __init__(self, dim, nc=1):
        super().__init__()
        self.dim = dim
        self.c1 = Sequential(
            [
                Conv2D(64, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.c2 = Sequential(
            [
                Conv2D(128, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.c3 = Sequential(
            [
                Conv2D(256, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.c4 = Sequential(
            [
                Conv2D(512, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.c5 = Sequential(
            [
                Conv2D(self.dim, kernel_size=4, strides=1, padding="valid"),
                BatchNormalization(),
                Activation("tanh"),
            ]
        )

    def call(self, input):
        h1 = self.c1(input)
        h2 = self.c2(h1)
        h3 = self.c3(h2)
        h4 = self.c4(h3)
        h5 = self.c5(h4)
        return tf.reshape(h5, (-1, self.dim)), [h1, h2, h3, h4, h5]


class Decoder(Model):
    def __init__(self, dim, nc=1):
        super().__init__()
        self.dim = dim
        self.upc1 = Sequential(
            [
                Conv2DTranspose(512, kernel_size=4, strides=1, padding="valid"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.upc2 = Sequential(
            [
                Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.upc3 = Sequential(
            [
                Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.upc4 = Sequential(
            [
                Conv2DTranspose(64, kernel_size=4, strides=2, padding="same"),
                BatchNormalization(),
                LeakyReLU(alpha=0.2),
            ]
        )
        self.upc5 = Sequential(
            [
                Conv2DTranspose(1, kernel_size=4, strides=2, padding="same"),
                Activation("sigmoid"),
            ]
        )

    def call(self, input):
        vec, skip = input
        d1 = self.upc1(tf.reshape(vec, (-1, 1, 1, self.dim)))
        d2 = self.upc2(tf.concat([d1, skip[3]], axis=-1))
        d3 = self.upc3(tf.concat([d2, skip[2]], axis=-1))
        d4 = self.upc4(tf.concat([d3, skip[1]], axis=-1))
        output = self.upc5(tf.concat([d4, skip[0]], axis=-1))
        return output


class MyLSTM(Model):
    def __init__(self, input_shape, hidden_size, output_size, n_layers):
        super().__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.embed = Dense(hidden_size, input_dim=input_shape)
        # self.lstm = Sequential(
        #     [LSTMCell(hidden_size) for _ in range(n_layers)], name="lstm"
        # )
        # self.lstm = self.create_lstm(hidden_size, n_layers)
        self.lstm = LSTMCell(hidden_size)
        self.out = Dense(output_size)

    def init_hidden(self, batch_size):
        hidden = []
        for i in range(self.n_layers):
            hidden.append(
                (
                    tf.Variable(tf.zeros([batch_size, self.hidden_size])),
                    tf.Variable(tf.zeros([batch_size, self.hidden_size])),
                )
            )
        self.__dict__["hidden"] = hidden

    def build(self, input_shape):
        self.init_hidden(input_shape[0])

    def call(self, inputs):
        h_in = self.embed(inputs)
        for i in range(self.n_layers):
            _, self.hidden[i] = self.lstm(h_in, self.hidden[i])
            h_in = self.hidden[i][0]

        return self.out(h_in)


class MyGaussianLSTM(Model):
    def __init__(self, input_shape, hidden_size, output_size, n_layers):
        super().__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.embed = Dense(hidden_size, input_dim=input_shape)
        # self.lstm = Sequential(
        #     [LSTMCell(hidden_size) for _ in range(n_layers)], name="lstm"
        # )
        self.lstm = LSTMCell(hidden_size)
        self.mu_net = Dense(output_size)
        self.logvar_net = Dense(output_size)
        # self.out = Sequential(
        #     [
        #         tf.keras.layers.Dense(
        #             tfp.layers.MultivariateNormalTriL.params_size(output_size),
        #             activation=None,
        #         ),
        #         tfp.layers.MultivariateNormalTriL(output_size),
        #     ]
        # )

    def reparameterize(self, mu, logvar: tf.Tensor):
        logvar = tf.math.exp(logvar * 0.5)
        eps = tf.random.normal(logvar.shape)
        return tf.add(tf.math.multiply(eps, logvar), mu)

    def init_hidden(self, batch_size):
        hidden = []
        for i in range(self.n_layers):
            hidden.append(
                (
                    tf.Variable(tf.zeros([batch_size, self.hidden_size])),
                    tf.Variable(tf.zeros([batch_size, self.hidden_size])),
                )
            )
        self.__dict__["hidden"] = hidden

    def build(self, input_shape):
        self.init_hidden(input_shape[0])

    def call(self, inputs):
        h_in = self.embed(inputs)
        for i in range(self.n_layers):
            # print(h_in.shape, self.hidden[i][0].shape, self.hidden[i][0].shape)

            _, self.hidden[i] = self.lstm(h_in, self.hidden[i])
            h_in = self.hidden[i][0]
        mu = self.mu_net(h_in)
        logvar = self.logvar_net(h_in)
        z = self.reparameterize(mu, logvar)
        return z, mu, logvar


class P2P(Model):
    def __init__(
        self,
        channels: int = 1,
        g_dim: int = 128,
        z_dim: int = 10,
        rnn_size: int = 256,
        prior_rnn_layers: int = 1,
        posterior_rnn_layers: int = 1,
        predictor_rnn_layers: float = 1,
        skip_prob: float = 0.5,
        n_past: int = 1,
        last_frame_skip: bool = False,
        beta: float = 0.0001,
        weight_align: float = 0.1,
        weight_cpc: float = 100,
    ):
        super().__init__()
        self.channels = channels
        self.g_dim = g_dim
        self.z_dim = z_dim
        self.rnn_size = rnn_size
        self.prior_rnn_layers = prior_rnn_layers
        self.posterior_rnn_layers = posterior_rnn_layers
        self.predictor_rnn_layers = predictor_rnn_layers

        self.skip_prob = skip_prob
        self.n_past = n_past
        self.last_frame_skip = last_frame_skip
        self.beta = beta
        self.weight_align = weight_align
        self.weight_cpc = weight_cpc

        self.frame_predictor = MyLSTM(
            self.g_dim + self.z_dim + 1 + 1,
            self.rnn_size,
            self.g_dim,
            self.predictor_rnn_layers,
        )

        self.prior = MyGaussianLSTM(
            self.g_dim + self.g_dim + 1 + 1,
            self.rnn_size,
            self.z_dim,
            self.prior_rnn_layers,
        )

        self.posterior = MyGaussianLSTM(
            self.g_dim + self.g_dim + 1 + 1,
            self.rnn_size,
            self.z_dim,
            self.posterior_rnn_layers,
        )

        self.encoder = Encoder(self.g_dim, self.channels)
        self.decoder = Decoder(self.g_dim, self.channels)

        # criterions
        self.mse_criterion = tf.keras.losses.MeanSquaredError()
        self.kl_criterion = KLCriterion()
        self.align_criterion = tf.keras.losses.MeanSquaredError()

        # optimizers
        self.frame_predictor_optimizer = tf.keras.optimizers.Adam(
            learning_rate=0.0001  # , beta_1=0.9, beta_2=0.999, epsilon=1e-8
        )
        self.posterior_optimizer = tf.keras.optimizers.Adam(
            learning_rate=0.0001  # , beta_1=0.9, beta_2=0.999, epsilon=1e-8
        )
        self.prior_optimizer = tf.keras.optimizers.Adam(
            learning_rate=0.0001  # , beta_1=0.9, beta_2=0.999, epsilon=1e-8
        )
        self.encoder_optimizer = tf.keras.optimizers.Adam(
            learning_rate=0.0001  # , beta_1=0.9, beta_2=0.999, epsilon=1e-8
        )
        self.decoder_optimizer = tf.keras.optimizers.Adam(
            learning_rate=0.0001  # , beta_1=0.9, beta_2=0.999, epsilon=1e-8
        )

    def get_global_descriptor(self, x, start_ix=0, cp_ix=None):
        """Get the global descriptor based on x, start_ix, cp_ix."""
        if cp_ix is None:
            cp_ix = x.shape[1] - 1

        x_cp = x[:, cp_ix, ...]
        h_cp = self.encoder(x_cp)[0]  # 1 is input for skip-connection

        return x_cp, h_cp

    def call(self, x, start_ix=0, cp_ix=-1):
        batch_size = x.shape[0]

        with tf.GradientTape(persistent=True) as tape:
            mse_loss = 0
            kld_loss = 0
            cpc_loss = 0
            align_loss = 0

            seq_len = x.shape[1]
            start_ix = 0
            cp_ix = seq_len - 1
            x_cp, global_z = self.get_global_descriptor(
                x, start_ix, cp_ix
            )  # here global_z is h_cp

            skip_prob = self.skip_prob

            prev_i = 0
            max_skip_count = seq_len * skip_prob
            skip_count = 0
            probs = np.random.uniform(low=0, high=1, size=seq_len - 1)

            for i in range(1, seq_len):
                if (
                    probs[i - 1] <= skip_prob
                    and i >= self.n_past
                    and skip_count < max_skip_count
                    and i != 1
                    and i != cp_ix
                ):
                    skip_count += 1
                    continue

                time_until_cp = tf.fill([batch_size, 1], (cp_ix - i + 1) / cp_ix)
                delta_time = tf.fill([batch_size, 1], ((i - prev_i) / cp_ix))
                prev_i = i

                h = self.encoder(x[:, i - 1, ...])
                h_target = self.encoder(x[:, i, ...])[0]

                if self.last_frame_skip or i <= self.n_past:
                    h, skip = h
                else:
                    h = h[0]

                # Control Point Aware
                h_cpaw = tf.concat([h, global_z, time_until_cp, delta_time], axis=1)
                h_target_cpaw = tf.concat(
                    [h_target, global_z, time_until_cp, delta_time], axis=1
                )
                zt, mu, logvar = self.posterior(h_target_cpaw)
                zt_p, mu_p, logvar_p = self.prior(h_cpaw)

                concat = tf.concat([h, zt, time_until_cp, delta_time], axis=1)
                h_pred = self.frame_predictor(concat)
                x_pred = self.decoder([h_pred, skip])

                if i == cp_ix:  # the gen-cp-frame should be exactly as x_cp
                    h_pred_p = self.frame_predictor(
                        tf.concat([h, zt_p, time_until_cp, delta_time], axis=1)
                    )
                    x_pred_p = self.decoder([h_pred_p, skip])
                    cpc_loss = self.mse_criterion(x_pred_p, x_cp)

                if i > 1:
                    align_loss += self.align_criterion(h[0], h_pred)

                mse_loss += self.mse_criterion(x_pred, x[:, i, ...])
                kld_loss += self.kl_criterion((mu, logvar), (mu_p, logvar_p))

            # backward
            loss = mse_loss + kld_loss * self.beta + align_loss * self.weight_align

            prior_loss = kld_loss + cpc_loss * self.weight_cpc

        var_list_frame_predictor = self.frame_predictor.trainable_variables
        var_list_posterior = self.posterior.trainable_variables
        var_list_prior = self.prior.trainable_variables
        var_list_encoder = self.encoder.trainable_variables
        var_list_decoder = self.decoder.trainable_variables

        # mse: frame_predictor + decoder
        # align: frame_predictor + encoder
        # kld: posterior + prior + encoder

        var_list_without_prior = (
            var_list_frame_predictor
            + var_list_posterior
            + var_list_encoder
            + var_list_decoder
        )

        gradients_without_prior = tape.gradient(
            loss,
            var_list_without_prior,
        )
        gradients_prior = tape.gradient(
            prior_loss,
            var_list_prior,
        )

        self.update_model_without_prior(
            gradients_without_prior,
            var_list_without_prior,
        )
        self.update_prior(gradients_prior, var_list_prior)
        del tape

        return (
            mse_loss / seq_len,
            kld_loss / seq_len,
            cpc_loss / seq_len,
            align_loss / seq_len,
        )

    def p2p_generate(
        self,
        x,
        len_output,
        eval_cp_ix,
        start_ix=0,
        cp_ix=-1,
        model_mode="full",
        skip_frame=False,
        init_hidden=True,
    ):
        batch_size, num_frames, h, w, channels = x.shape
        dim_shape = (h, w, channels)

        gen_seq = [x[:, 0, ...]]
        x_in = x[:, 0, ...]

        seq_len = x.shape[1]
        cp_ix = seq_len - 1

        x_cp, global_z = self.get_global_descriptor(
            x, cp_ix=cp_ix
        )  # here global_z is h_cp

        skip_prob = self.skip_prob

        prev_i = 0
        max_skip_count = seq_len * skip_prob
        skip_count = 0
        probs = np.random.uniform(0, 1, len_output - 1)

        for i in range(1, len_output):
            if (
                probs[i - 1] <= skip_prob
                and i >= self.n_past
                and skip_count < max_skip_count
                and i != 1
                and i != (len_output - 1)
                and skip_frame
            ):
                skip_count += 1
                gen_seq.append(tf.zeros_like(x_in))
                continue

            time_until_cp = tf.fill([batch_size, 1], (eval_cp_ix - i + 1) / eval_cp_ix)

            delta_time = tf.fill([batch_size, 1], ((i - prev_i) / eval_cp_ix))

            prev_i = i

            h = self.encoder(x_in)

            if self.last_frame_skip or i == 1 or i < self.n_past:
                h, skip = h
            else:
                h, _ = h

            h_cpaw = tf.concat([h, global_z, time_until_cp, delta_time], axis=1)

            if i < self.n_past:
                h_target = self.encoder(x[:, i, ...])[0]
                h_target_cpaw = tf.concat(
                    [h_target, global_z, time_until_cp, delta_time], axis=1
                )

                zt, _, _ = self.posterior(h_target_cpaw)
                zt_p, _, _ = self.prior(h_cpaw)

                if model_mode == "posterior" or model_mode == "full":
                    self.frame_predictor(
                        tf.concat([h, zt, time_until_cp, delta_time], axis=1)
                    )
                elif model_mode == "prior":
                    self.frame_predictor(
                        tf.concat([h, zt_p, time_until_cp, delta_time], axis=1)
                    )

                x_in = x[:, i, ...]
                gen_seq.append(x_in)
            else:
                if i < num_frames:
                    h_target = self.encoder(x[:, i, ...])[0]
                    h_target_cpaw = tf.concat(
                        [h_target, global_z, time_until_cp, delta_time], axis=1
                    )
                else:
                    h_target_cpaw = h_cpaw

                zt, _, _ = self.posterior(h_target_cpaw)
                zt_p, _, _ = self.prior(h_cpaw)

                if model_mode == "posterior":
                    h = self.frame_predictor(
                        tf.concat([h, zt, time_until_cp, delta_time], axis=1)
                    )
                elif model_mode == "prior" or model_mode == "full":
                    h = self.frame_predictor(
                        tf.concat([h, zt_p, time_until_cp, delta_time], axis=1)
                    )

                x_in = self.decoder([h, skip])
                gen_seq.append(x_in)
        return tf.stack(gen_seq, axis=1)

    def update_model_without_prior(self, gradients, var_list):
        self.frame_predictor_optimizer.apply_gradients(zip(gradients, var_list))
        self.posterior_optimizer.apply_gradients(zip(gradients, var_list))
        self.encoder_optimizer.apply_gradients(zip(gradients, var_list))
        self.decoder_optimizer.apply_gradients(zip(gradients, var_list))

    def update_prior(self, gradients, var_list):
        self.prior_optimizer.apply_gradients(zip(gradients, var_list))

    # def update_model_without_prior(self):
    #     self.frame_predictor_optimizer.step()
    #     self.posterior_optimizer.step()
    #     self.encoder_optimizer.step()
    #     self.decoder_optimizer.step()