File size: 10,667 Bytes
3be620b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import math

import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from ganime.configs.model_configs import GPTConfig, ModelConfig
from ganime.model.vqgan_clean.transformer.mingpt import GPT
from ganime.model.vqgan_clean.vqgan import VQGAN
from tensorflow import keras
from tensorflow.keras import Model, layers


class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule):
    """A LearningRateSchedule that uses a warmup cosine decay schedule."""

    def __init__(self, lr_start, lr_max, warmup_steps, total_steps):
        """
        Args:
            lr_start: The initial learning rate
            lr_max: The maximum learning rate to which lr should increase to in
                the warmup steps
            warmup_steps: The number of steps for which the model warms up
            total_steps: The total number of steps for the model training
        """
        super().__init__()
        self.lr_start = lr_start
        self.lr_max = lr_max
        self.warmup_steps = warmup_steps
        self.total_steps = total_steps
        self.pi = tf.constant(np.pi)

    def __call__(self, step):
        # Check whether the total number of steps is larger than the warmup
        # steps. If not, then throw a value error.
        if self.total_steps < self.warmup_steps:
            raise ValueError(
                f"Total number of steps {self.total_steps} must be"
                + f"larger or equal to warmup steps {self.warmup_steps}."
            )

        # `cos_annealed_lr` is a graph that increases to 1 from the initial
        # step to the warmup step. After that this graph decays to -1 at the
        # final step mark.
        cos_annealed_lr = tf.cos(
            self.pi
            * (tf.cast(step, tf.float32) - self.warmup_steps)
            / tf.cast(self.total_steps - self.warmup_steps, tf.float32)
        )

        # Shift the mean of the `cos_annealed_lr` graph to 1. Now the grpah goes
        # from 0 to 2. Normalize the graph with 0.5 so that now it goes from 0
        # to 1. With the normalized graph we scale it with `lr_max` such that
        # it goes from 0 to `lr_max`
        learning_rate = 0.5 * self.lr_max * (1 + cos_annealed_lr)

        # Check whether warmup_steps is more than 0.
        if self.warmup_steps > 0:
            # Check whether lr_max is larger that lr_start. If not, throw a value
            # error.
            if self.lr_max < self.lr_start:
                raise ValueError(
                    f"lr_start {self.lr_start} must be smaller or"
                    + f"equal to lr_max {self.lr_max}."
                )

            # Calculate the slope with which the learning rate should increase
            # in the warumup schedule. The formula for slope is m = ((b-a)/steps)
            slope = (self.lr_max - self.lr_start) / self.warmup_steps

            # With the formula for a straight line (y = mx+c) build the warmup
            # schedule
            warmup_rate = slope * tf.cast(step, tf.float32) + self.lr_start

            # When the current step is lesser that warmup steps, get the line
            # graph. When the current step is greater than the warmup steps, get
            # the scaled cos graph.
            learning_rate = tf.where(
                step < self.warmup_steps, warmup_rate, learning_rate
            )

        # When the current step is more that the total steps, return 0 else return
        # the calculated graph.
        return tf.where(
            step > self.total_steps, 0.0, learning_rate, name="learning_rate"
        )


LEN_X_TRAIN = 8000
BATCH_SIZE = 16
N_EPOCHS = 500
TOTAL_STEPS = int(LEN_X_TRAIN / BATCH_SIZE * N_EPOCHS)
WARMUP_EPOCH_PERCENTAGE = 0.15
WARMUP_STEPS = int(TOTAL_STEPS * WARMUP_EPOCH_PERCENTAGE)


class Net2Net(Model):
    def __init__(
        self,
        transformer_config: GPTConfig,
        first_stage_config: ModelConfig,
        cond_stage_config: ModelConfig,
    ):
        super().__init__()
        self.transformer = GPT(**transformer_config)
        self.first_stage_model = VQGAN(**first_stage_config)
        self.cond_stage_model = self.first_stage_model  # VQGAN(**cond_stage_config)

        self.loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=True, reduction=tf.keras.losses.Reduction.NONE
        )

        self.loss_tracker = keras.metrics.Mean(name="loss")
        # self.compile(
        #     "adam",
        #     loss=self.loss_fn,
        # )

        # Calculate the number of steps for warmup.

        # Initialize the warmupcosine schedule.
        self.scheduled_lrs = WarmUpCosine(
            lr_start=1e-5,
            lr_max=2.5e-4,
            warmup_steps=WARMUP_STEPS,
            total_steps=TOTAL_STEPS,
        )

        self.compile(
            optimizer=tfa.optimizers.AdamW(
                learning_rate=self.scheduled_lrs, weight_decay=1e-4
            ),
            loss=[self.loss_fn, None],
        )

    @property
    def metrics(self):
        # We list our `Metric` objects here so that `reset_states()` can be
        # called automatically at the start of each epoch
        # or at the start of `evaluate()`.
        # If you don't implement this property, you have to call
        # `reset_states()` yourself at the time of your choosing.
        return [
            self.loss_tracker,
        ]

    def encode_to_z(self, x):
        quant_z, indices, quantized_loss = self.first_stage_model.encode(x)

        batch_size = tf.shape(quant_z)[0]

        indices = tf.reshape(indices, shape=(batch_size, -1))
        return quant_z, indices

    def encode_to_c(self, c):
        quant_c, indices, quantized_loss = self.cond_stage_model.encode(c)

        batch_size = tf.shape(quant_c)[0]

        indices = tf.reshape(indices, shape=(batch_size, -1))
        return quant_c, indices

    # def build(self, input_shape):
    #     self.first_stage_model.build(input_shape)
    #     self.cond_stage_model.build(input_shape)
    #     return super().build(input_shape)

    def call(self, inputs, training=None, mask=None):
        # x, c = inputs

        # # one step to produce the logits
        # _, z_indices = self.encode_to_z(x)
        # _, c_indices = self.encode_to_c(c)

        # cz_indices = tf.concat((c_indices, z_indices), axis=1)

        # target = z_indices
        # logits = self.transformer(
        #     cz_indices[:, :-1]  # , training=training
        # )  # don't know why -1

        # logits = logits[:, tf.shape(c_indices)[1] - 1 :]  # -1 here 'cause -1 above

        # logits = tf.reshape(logits, shape=(-1, logits.shape[-1]))
        # target = tf.reshape(target, shape=(-1,))

        # return logits, target
        if isinstance(inputs, tuple) and len(inputs) == 2:
            first_last_frame, y = inputs
        else:
            first_last_frame, y = inputs, None

        return self.process_video(first_last_frame, y)

    @tf.function()
    def process_image(self, x, c, target_image=None):

        frame_loss = 0

        # one step to produce the logits
        quant_z, z_indices = self.encode_to_z(x)
        _, c_indices = self.encode_to_c(c)

        cz_indices = tf.concat((c_indices, z_indices), axis=1)

        logits = self.transformer(
            cz_indices[:, :-1]  # , training=training
        )  # don't know why -1

        # Remove the conditioned part
        logits = logits[:, tf.shape(c_indices)[1] - 1 :]  # -1 here 'cause -1 above

        logits = tf.reshape(logits, shape=(-1, logits.shape[-1]))

        if target_image is not None:
            _, target_indices = self.encode_to_z(target_image)

            target_indices = tf.reshape(target_indices, shape=(-1,))

            frame_loss = tf.reduce_mean(
                self.loss_fn(y_true=target_indices, y_pred=logits)
            )

        image = self.get_image(logits, tf.shape(quant_z))

        return image, frame_loss

    # @tf.function()
    def process_video(self, first_last_frame, target_video=None):

        first_frame = first_last_frame[:, 0]
        last_frame = first_last_frame[:, -1]

        x = first_frame
        c = last_frame

        total_loss = 0
        generated_video = [x]

        for i in range(19):  # TODO change 19 to the number of frame in the video

            if target_video is not None:

                with tf.GradientTape() as tape:
                    target = target_video[:, i, ...] if target_video is not None else None
                    generated_image, frame_loss = self.process_image(x, c, target_image=target)
                    x = generated_image
                    generated_video.append(generated_image)

                grads = tape.gradient(
                    frame_loss,
                    self.transformer.trainable_variables,
                )
                self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
                total_loss += frame_loss

            else:
                target = target_video[:, i, ...] if target_video is not None else None
                generated_image, frame_loss = self.process_image(x, c, target_image=target)
                x = generated_image
                generated_video.append(generated_image)

        if target_video is not None:
            return tf.stack(generated_video, axis=1), total_loss
        else:
            return tf.stack(generated_video, axis=1)

    def train_step(self, data):

        first_last_frame, y = data

        generated_video, loss = self.process_video(first_last_frame, y)
        self.loss_tracker.update_state(loss)

        # Log results.
        return {m.name: m.result() for m in self.metrics}

    def get_image(self, logits, shape):
        probs = tf.keras.activations.softmax(logits)
        _, generated_indices = tf.math.top_k(probs)
        generated_indices = tf.reshape(
            generated_indices,
            (-1,),  # , self.first_stage_model.quantize.num_embeddings)
        )
        quant = self.first_stage_model.quantize.get_codebook_entry(
            generated_indices, shape=shape
        )
        return self.first_stage_model.decode(quant)

    def test_step(self, data):

        first_last_frame, y = data

        generated_video, loss = self.process_video(first_last_frame, y)

        self.loss_tracker.update_state(loss)

        # Log results.
        return {m.name: m.result() for m in self.metrics}

    def decode_to_img(self, index, zshape):
        quant_z = self.first_stage_model.quantize.get_codebook_entry(
            tf.reshape(index, -1), shape=zshape
        )
        x = self.first_stage_model.decode(quant_z)
        return x