File size: 6,209 Bytes
3be620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Model, Sequential, layers
class TransformerBlock(layers.Layer):
def __init__(self, n_embedding, n_head, attention_percentage_drop):
super().__init__()
self.att = layers.MultiHeadAttention(n_head, n_embedding)
self.ffn = Sequential(
[
layers.Dense(n_embedding * 4, activation="relu"),
layers.Dense(n_embedding),
]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(attention_percentage_drop)
self.dropout2 = layers.Dropout(attention_percentage_drop)
def causal_attention_mask(self, batch_size, n_dest, n_src, dtype):
"""
Mask the upper half of the dot product matrix in self attention.
This prevents flow of information from future tokens to current token.
1's in the lower triangle, counting from the lower right corner.
"""
i = tf.range(n_dest)[:, None]
j = tf.range(n_src)
m = i >= j - n_src + n_dest
mask = tf.cast(m, dtype)
mask = tf.reshape(mask, [1, n_dest, n_src])
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0
)
return tf.tile(mask, mult)
def call(self, inputs):
input_shape = tf.shape(inputs)
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool)
attention_output = self.att(inputs, inputs, attention_mask=causal_mask)
attention_output = self.dropout1(attention_output)
out1 = self.layernorm1(inputs + attention_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
class TransformerBlockV2(layers.Layer):
def __init__(self, n_embedding, n_head, attention_percentage_drop):
super().__init__()
self.att = layers.MultiHeadAttention(n_head, n_embedding)
self.mlp = Sequential(
[
layers.Dense(n_embedding * 4),
layers.Activation("gelu"),
layers.Dense(n_embedding),
layers.Dropout(attention_percentage_drop),
]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
def causal_attention_mask(self, batch_size, n_dest, n_src, dtype):
"""
Mask the upper half of the dot product matrix in self attention.
This prevents flow of information from future tokens to current token.
1's in the lower triangle, counting from the lower right corner.
"""
i = tf.range(n_dest)[:, None]
j = tf.range(n_src)
m = i >= j - n_src + n_dest
mask = tf.cast(m, dtype)
mask = tf.reshape(mask, [1, n_dest, n_src])
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0
)
return tf.tile(mask, mult)
def call(self, inputs):
input_shape = tf.shape(inputs)
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = self.causal_attention_mask(batch_size, seq_len, seq_len, tf.bool)
h = inputs
h = self.layernorm1(h)
h = self.att(h, h, attention_mask=causal_mask)
h = inputs + h
h = h + self.mlp(self.layernorm2(h))
return h
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, block_size, vocab_size, n_embedding, embedding_percentage_drop):
super(TokenAndPositionEmbedding, self).__init__()
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=n_embedding)
self.pos_emb = layers.Embedding(input_dim=block_size, output_dim=n_embedding)
self.dropout = layers.Dropout(embedding_percentage_drop)
def call(self, x, training=None, mask=None):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return self.dropout(x + positions, training=training)
class GPT(Model):
def __init__(
self,
vocab_size,
block_size,
n_layer,
n_head,
n_embedding,
embedding_percentage_drop,
attention_percentage_drop,
):
super().__init__()
self.block_size = block_size
self.embedding_layer = TokenAndPositionEmbedding(
block_size=block_size,
vocab_size=vocab_size,
n_embedding=n_embedding,
embedding_percentage_drop=embedding_percentage_drop,
)
self.blocks = [
TransformerBlock(
n_embedding=n_embedding,
n_head=n_head,
attention_percentage_drop=attention_percentage_drop,
)
for _ in range(n_layer)
]
self.layer_norm = layers.LayerNormalization(epsilon=1e-6)
self.outputs = layers.Dense(vocab_size)
# loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# self.compile(
# "adam",
# loss=loss_fn,
# ) # No loss and optimization based on word embeddings from transformer block
# def build(self, input_shape):
# self.input_shape = input_shape
def summary(self):
x = layers.Input(shape=self.input_shape[1:])
model = Model(inputs=[x], outputs=self.call(x))
return model.summary()
def build_graph(self, raw_shape):
x = tf.keras.layers.Input(shape=(raw_shape), ragged=True)
return tf.keras.Model(inputs=[x], outputs=self.call(x))
def call(self, inputs, training=True, mask=None):
token_embeddings = self.embedding_layer(inputs)
h = token_embeddings
for block in self.blocks:
h = block(h)
h = self.layer_norm(h)
logits = self.outputs(h)
return logits
|