File size: 25,060 Bytes
3be620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
from typing import List, Literal
import numpy as np
import tensorflow as tf
from .discriminator.model import NLayerDiscriminator
from .losses.vqperceptual import VQLPIPSWithDiscriminator
from tensorflow import keras
from tensorflow.keras import Model, layers, Sequential
from tensorflow.keras.optimizers import Optimizer
from tensorflow_addons.layers import GroupNormalization
INPUT_SHAPE = (64, 128, 3)
ENCODER_OUTPUT_SHAPE = (8, 8, 128)
@tf.function
def hinge_d_loss(logits_real, logits_fake):
loss_real = tf.reduce_mean(keras.activations.relu(1.0 - logits_real))
loss_fake = tf.reduce_mean(keras.activations.relu(1.0 + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
@tf.function
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
tf.reduce_mean(keras.activations.softplus(-logits_real))
+ tf.reduce_mean(keras.activations.softplus(logits_fake))
)
return d_loss
class VQGAN(keras.Model):
def __init__(
self,
train_variance: float,
num_embeddings: int,
embedding_dim: int,
beta: float = 0.25,
z_channels: int = 128, # 256,
codebook_weight: float = 1.0,
disc_num_layers: int = 3,
disc_factor: float = 1.0,
disc_iter_start: int = 0,
disc_conditional: bool = False,
disc_in_channels: int = 3,
disc_weight: float = 0.3,
disc_filters: int = 64,
disc_loss: Literal["hinge", "vanilla"] = "hinge",
**kwargs,
):
super().__init__(**kwargs)
self.train_variance = train_variance
self.codebook_weight = codebook_weight
self.encoder = Encoder()
self.decoder = Decoder()
self.quantize = VectorQuantizer(num_embeddings, embedding_dim, beta=beta)
self.quant_conv = layers.Conv2D(embedding_dim, kernel_size=1)
self.post_quant_conv = layers.Conv2D(z_channels, kernel_size=1)
self.vqvae = self.get_vqvae()
self.perceptual_loss = VQLPIPSWithDiscriminator(
reduction=tf.keras.losses.Reduction.NONE
)
self.discriminator = NLayerDiscriminator(
input_channels=disc_in_channels,
filters=disc_filters,
n_layers=disc_num_layers,
)
self.discriminator_iter_start = disc_iter_start
if disc_loss == "hinge":
self.disc_loss = hinge_d_loss
elif disc_loss == "vanilla":
self.disc_loss = vanilla_d_loss
else:
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.disc_conditional = disc_conditional
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.reconstruction_loss_tracker = keras.metrics.Mean(
name="reconstruction_loss"
)
self.vq_loss_tracker = keras.metrics.Mean(name="vq_loss")
self.disc_loss_tracker = keras.metrics.Mean(name="disc_loss")
self.gen_optimizer: Optimizer = None
self.disc_optimizer: Optimizer = None
def get_vqvae(self):
inputs = keras.Input(shape=INPUT_SHAPE)
quant = self.encode(inputs)
reconstructed = self.decode(quant)
return keras.Model(inputs, reconstructed, name="vq_vae")
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return self.quantize(h)
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def call(self, inputs, training=True, mask=None):
return self.vqvae(inputs)
def calculate_adaptive_weight(
self, nll_loss, g_loss, tape, trainable_vars, discriminator_weight
):
nll_grads = tape.gradient(nll_loss, trainable_vars)[0]
g_grads = tape.gradient(g_loss, trainable_vars)[0]
d_weight = tf.norm(nll_grads) / (tf.norm(g_grads) + 1e-4)
d_weight = tf.stop_gradient(tf.clip_by_value(d_weight, 0.0, 1e4))
return d_weight * discriminator_weight
@tf.function
def adopt_weight(self, weight, global_step, threshold=0, value=0.0):
if global_step < threshold:
weight = value
return weight
def get_global_step(self, optimizer):
return optimizer.iterations
def compile(
self,
gen_optimizer,
disc_optimizer,
):
super().compile()
self.gen_optimizer = gen_optimizer
self.disc_optimizer = disc_optimizer
def train_step(self, data):
x, y = data
# Autoencode
with tf.GradientTape() as tape:
with tf.GradientTape(persistent=True) as adaptive_tape:
reconstructions = self(x, training=True)
# Calculate the losses.
# reconstruction_loss = (
# tf.reduce_mean((y - reconstructions) ** 2) / self.train_variance
# )
logits_fake = self.discriminator(reconstructions, training=False)
g_loss = -tf.reduce_mean(logits_fake)
nll_loss = self.perceptual_loss(y, reconstructions)
d_weight = self.calculate_adaptive_weight(
nll_loss,
g_loss,
adaptive_tape,
self.decoder.conv_out.trainable_variables,
self.discriminator_weight,
)
del adaptive_tape
disc_factor = self.adopt_weight(
weight=self.disc_factor,
global_step=self.get_global_step(self.gen_optimizer),
threshold=self.discriminator_iter_start,
)
# total_loss = reconstruction_loss + sum(self.vqvae.losses)
total_loss = (
nll_loss
+ d_weight * disc_factor * g_loss
# + self.codebook_weight * tf.reduce_mean(self.vqvae.losses)
+ self.codebook_weight * sum(self.vqvae.losses)
)
# Backpropagation.
grads = tape.gradient(total_loss, self.vqvae.trainable_variables)
self.gen_optimizer.apply_gradients(zip(grads, self.vqvae.trainable_variables))
# Discriminator
with tf.GradientTape() as disc_tape:
logits_real = self.discriminator(y, training=True)
logits_fake = self.discriminator(reconstructions, training=True)
disc_factor = self.adopt_weight(
weight=self.disc_factor,
global_step=self.get_global_step(self.disc_optimizer),
threshold=self.discriminator_iter_start,
)
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
disc_grads = disc_tape.gradient(d_loss, self.discriminator.trainable_variables)
self.disc_optimizer.apply_gradients(
zip(disc_grads, self.discriminator.trainable_variables)
)
# Loss tracking.
self.total_loss_tracker.update_state(total_loss)
self.reconstruction_loss_tracker.update_state(nll_loss)
self.vq_loss_tracker.update_state(sum(self.vqvae.losses))
self.disc_loss_tracker.update_state(d_loss)
# Log results.
return {
"loss": self.total_loss_tracker.result(),
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
"vqvae_loss": self.vq_loss_tracker.result(),
"disc_loss": self.disc_loss_tracker.result(),
}
class VectorQuantizer(layers.Layer):
def __init__(self, num_embeddings, embedding_dim, beta=0.25, **kwargs):
super().__init__(**kwargs)
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.beta = (
beta # This parameter is best kept between [0.25, 2] as per the paper.
)
# Initialize the embeddings which we will quantize.
w_init = tf.random_uniform_initializer()
self.embeddings = tf.Variable(
initial_value=w_init(
shape=(self.embedding_dim, self.num_embeddings) # , dtype="float32"
),
trainable=True,
name="embeddings_vqvae",
)
def call(self, x):
# Calculate the input shape of the inputs and
# then flatten the inputs keeping `embedding_dim` intact.
input_shape = tf.shape(x)
flattened = tf.reshape(x, [-1, self.embedding_dim])
# Quantization.
encoding_indices = self.get_code_indices(flattened)
encodings = tf.one_hot(encoding_indices, self.num_embeddings)
quantized = tf.matmul(encodings, self.embeddings, transpose_b=True)
quantized = tf.reshape(quantized, input_shape)
# Calculate vector quantization loss and add that to the layer. You can learn more
# about adding losses to different layers here:
# https://keras.io/guides/making_new_layers_and_models_via_subclassing/. Check
# the original paper to get a handle on the formulation of the loss function.
commitment_loss = self.beta * tf.reduce_mean(
(tf.stop_gradient(quantized) - x) ** 2
)
codebook_loss = tf.reduce_mean((quantized - tf.stop_gradient(x)) ** 2)
self.add_loss(commitment_loss + codebook_loss)
# Straight-through estimator.
quantized = x + tf.stop_gradient(quantized - x)
return quantized
def get_code_indices(self, flattened_inputs):
# Calculate L2-normalized distance between the inputs and the codes.
similarity = tf.matmul(flattened_inputs, self.embeddings)
distances = (
tf.reduce_sum(flattened_inputs**2, axis=1, keepdims=True)
+ tf.reduce_sum(self.embeddings**2, axis=0)
- 2 * similarity
)
# Derive the indices for minimum distances.
encoding_indices = tf.argmin(distances, axis=1)
return encoding_indices
class Encoder(Model):
def __init__(
self,
*,
channels: int = 128,
output_channels: int = 3,
channels_multiplier: List[int] = [1, 1, 2, 2], # [1, 1, 2, 2, 4],
num_res_blocks: int = 1, # 2,
attention_resolution: List[int] = [16],
resolution: int = 64, # 256,
z_channels=128, # 256,
dropout=0.0,
double_z=False,
resamp_with_conv=True,
):
super().__init__()
self.channels = channels
self.timestep_embeddings_channel = 0
self.num_resolutions = len(channels_multiplier)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.conv_in = layers.Conv2D(
self.channels, kernel_size=3, strides=1, padding="same"
)
current_resolution = resolution
in_channels_multiplier = (1,) + tuple(channels_multiplier)
self.downsampling_list = []
for i_level in range(self.num_resolutions):
block_in = channels * in_channels_multiplier[i_level]
block_out = channels * channels_multiplier[i_level]
for i_block in range(self.num_res_blocks):
self.downsampling_list.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
)
block_in = block_out
if current_resolution in attention_resolution:
# attentions.append(layers.Attention())
self.downsampling_list.append(AttentionBlock(block_in))
if i_level != self.num_resolutions - 1:
self.downsampling_list.append(Downsample(block_in, resamp_with_conv))
# self.downsampling = []
# for i_level in range(self.num_resolutions):
# block = []
# attentions = []
# block_in = channels * in_channels_multiplier[i_level]
# block_out = channels * channels_multiplier[i_level]
# for i_block in range(self.num_res_blocks):
# block.append(
# ResnetBlock(
# in_channels=block_in,
# out_channels=block_out,
# timestep_embedding_channels=self.timestep_embeddings_channel,
# dropout=dropout,
# )
# )
# block_in = block_out
# if current_resolution in attention_resolution:
# # attentions.append(layers.Attention())
# attentions.append(AttentionBlock(block_in))
# down = {}
# down["block"] = block
# down["attention"] = attentions
# if i_level != self.num_resolutions - 1:
# down["downsample"] = Downsample(block_in, resamp_with_conv)
# self.downsampling.append(down)
# middle
self.mid = {}
self.mid["block_1"] = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
self.mid["attn_1"] = AttentionBlock(block_in)
self.mid["block_2"] = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
# end
self.norm_out = GroupNormalization(groups=32, epsilon=1e-6)
self.conv_out = layers.Conv2D(
2 * z_channels if double_z else z_channels,
kernel_size=3,
strides=1,
padding="same",
)
def summary(self):
x = layers.Input(shape=INPUT_SHAPE)
model = Model(inputs=[x], outputs=self.call(x))
return model.summary()
def call(self, inputs, training=True, mask=None):
h = self.conv_in(inputs)
for downsampling in self.downsampling_list:
h = downsampling(h)
# for i_level in range(self.num_resolutions):
# for i_block in range(self.num_res_blocks):
# h = self.downsampling[i_level]["block"][i_block](hs[-1])
# if len(self.downsampling[i_level]["attention"]) > 0:
# h = self.downsampling[i_level]["attention"][i_block](h)
# hs.append(h)
# if i_level != self.num_resolutions - 1:
# hs.append(self.downsampling[i_level]["downsample"](hs[-1]))
# h = hs[-1]
h = self.mid["block_1"](h)
h = self.mid["attn_1"](h)
h = self.mid["block_2"](h)
# end
h = self.norm_out(h)
h = keras.activations.swish(h)
h = self.conv_out(h)
return h
class Decoder(Model):
def __init__(
self,
*,
channels: int = 128,
output_channels: int = 3,
channels_multiplier: List[int] = [1, 1, 2, 2], # [1, 1, 2, 2, 4],
num_res_blocks: int = 1, # 2,
attention_resolution: List[int] = [16],
resolution: int = 64, # 256,
z_channels=128, # 256,
dropout=0.0,
give_pre_end=False,
resamp_with_conv=True,
):
super().__init__()
self.channels = channels
self.timestep_embeddings_channel = 0
self.num_resolutions = len(channels_multiplier)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.give_pre_end = give_pre_end
in_channels_multiplier = (1,) + tuple(channels_multiplier)
block_in = channels * channels_multiplier[-1]
current_resolution = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, current_resolution, current_resolution)
print(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
self.conv_in = layers.Conv2D(block_in, kernel_size=3, strides=1, padding="same")
# middle
self.mid = {}
self.mid["block_1"] = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
self.mid["attn_1"] = AttentionBlock(block_in)
self.mid["block_2"] = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
# upsampling
self.upsampling_list = []
for i_level in reversed(range(self.num_resolutions)):
block_out = channels * channels_multiplier[i_level]
for i_block in range(self.num_res_blocks + 1):
self.upsampling_list.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
timestep_embedding_channels=self.timestep_embeddings_channel,
dropout=dropout,
)
)
block_in = block_out
if current_resolution in attention_resolution:
# attentions.append(layers.Attention())
self.upsampling_list.append(AttentionBlock(block_in))
if i_level != 0:
self.upsampling_list.append(Upsample(block_in, resamp_with_conv))
current_resolution *= 2
# self.upsampling.insert(0, upsampling)
# self.upsampling = []
# for i_level in reversed(range(self.num_resolutions)):
# block = []
# attentions = []
# block_out = channels * channels_multiplier[i_level]
# for i_block in range(self.num_res_blocks + 1):
# block.append(
# ResnetBlock(
# in_channels=block_in,
# out_channels=block_out,
# timestep_embedding_channels=self.timestep_embeddings_channel,
# dropout=dropout,
# )
# )
# block_in = block_out
# if current_resolution in attention_resolution:
# # attentions.append(layers.Attention())
# attentions.append(AttentionBlock(block_in))
# upsampling = {}
# upsampling["block"] = block
# upsampling["attention"] = attentions
# if i_level != 0:
# upsampling["upsample"] = Upsample(block_in, resamp_with_conv)
# current_resolution *= 2
# self.upsampling.insert(0, upsampling)
# end
self.norm_out = GroupNormalization(groups=32, epsilon=1e-6)
self.conv_out = layers.Conv2D(
output_channels,
kernel_size=3,
strides=1,
activation="sigmoid",
padding="same",
)
def summary(self):
x = layers.Input(shape=ENCODER_OUTPUT_SHAPE)
model = Model(inputs=[x], outputs=self.call(x))
return model.summary()
def call(self, inputs, training=True, mask=None):
h = self.conv_in(inputs)
# middle
h = self.mid["block_1"](h)
h = self.mid["attn_1"](h)
h = self.mid["block_2"](h)
for upsampling in self.upsampling_list:
h = upsampling(h)
# for i_level in reversed(range(self.num_resolutions)):
# for i_block in range(self.num_res_blocks + 1):
# h = self.upsampling[i_level]["block"][i_block](h)
# if len(self.upsampling[i_level]["attention"]) > 0:
# h = self.upsampling[i_level]["attention"][i_block](h)
# if i_level != 0:
# h = self.upsampling[i_level]["upsample"](h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = keras.activations.swish(h)
h = self.conv_out(h)
return h
class ResnetBlock(layers.Layer):
def __init__(
self,
*,
in_channels,
dropout=0.0,
out_channels=None,
conv_shortcut=False,
timestep_embedding_channels=512,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = GroupNormalization(groups=32, epsilon=1e-6)
self.conv1 = layers.Conv2D(
out_channels, kernel_size=3, strides=1, padding="same"
)
if timestep_embedding_channels > 0:
self.timestep_embedding_projection = layers.Dense(out_channels)
self.norm2 = GroupNormalization(groups=32, epsilon=1e-6)
self.dropout = layers.Dropout(dropout)
self.conv2 = layers.Conv2D(
out_channels, kernel_size=3, strides=1, padding="same"
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = layers.Conv2D(
out_channels, kernel_size=3, strides=1, padding="same"
)
else:
self.nin_shortcut = layers.Conv2D(
out_channels, kernel_size=1, strides=1, padding="valid"
)
def call(self, x):
h = x
h = self.norm1(h)
h = keras.activations.swish(h)
h = self.conv1(h)
# if timestamp_embedding is not None:
# h = h + self.timestep_embedding_projection(keras.activations.swish(timestamp_embedding))
h = self.norm2(h)
h = keras.activations.swish(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttentionBlock(layers.Layer):
def __init__(self, channels):
super().__init__()
self.norm = GroupNormalization(groups=32, epsilon=1e-6)
self.q = layers.Conv2D(channels, kernel_size=1, strides=1, padding="valid")
self.k = layers.Conv2D(channels, kernel_size=1, strides=1, padding="valid")
self.v = layers.Conv2D(channels, kernel_size=1, strides=1, padding="valid")
self.proj_out = layers.Conv2D(
channels, kernel_size=1, strides=1, padding="valid"
)
def call(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
(
b,
h,
w,
c,
) = q.shape
if b is None:
b = -1
q = tf.reshape(q, [b, h * w, c])
k = tf.reshape(k, [b, h * w, c])
w_ = tf.matmul(
q, k, transpose_b=True
) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = keras.activations.softmax(w_)
# attend to values
v = tf.reshape(v, [b, h * w, c])
# w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = tf.matmul(
v, w_, transpose_a=True
) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
# h_ = h_.reshape(b, c, h, w)
h_ = tf.reshape(h_, [b, h, w, c])
h_ = self.proj_out(h_)
return x + h_
class Downsample(layers.Layer):
def __init__(self, channels, with_conv=True):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.down_sample = layers.Conv2D(
channels, kernel_size=3, strides=2, padding="same"
)
else:
self.down_sample = layers.AveragePooling2D(pool_size=2, strides=2)
def call(self, x):
x = self.down_sample(x)
return x
class Upsample(layers.Layer):
def __init__(self, channels, with_conv=False):
super().__init__()
self.with_conv = with_conv
if False: # self.with_conv:
self.up_sample = layers.Conv2DTranspose(
channels, kernel_size=3, strides=2, padding="same"
)
else:
self.up_sample = Sequential(
[
layers.UpSampling2D(size=2, interpolation="nearest"),
layers.Conv2D(channels, kernel_size=3, strides=1, padding="same"),
]
)
def call(self, x):
x = self.up_sample(x)
return x
|