File size: 14,830 Bytes
3be620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Feature loss based on 19 layer VGG network.
The network layers in the feature loss is weighted as described in
'Stereo Magnification: Learning View Synthesis using Multiplane Images',
Tinghui Zhou, Richard Tucker, Flynn, Graham Fyffe, Noah Snavely, SIGGRAPH 2018.
"""
from typing import Any, Callable, Dict, Optional, Sequence, Tuple
import numpy as np
import scipy.io as sio
import tensorflow.compat.v1 as tf
def _build_net(
layer_type: str,
input_tensor: tf.Tensor,
weight_bias: Optional[Tuple[tf.Tensor, tf.Tensor]] = None,
name: Optional[str] = None,
) -> Callable[[Any], Any]:
"""Build a layer of the VGG network.
Args:
layer_type: A string, type of this layer.
input_tensor: A tensor.
weight_bias: A tuple of weight and bias.
name: A string, name of this layer.
Returns:
A callable function of the tensorflow layer.
Raises:
ValueError: If layer_type is not conv or pool.
"""
if layer_type == "conv":
return tf.nn.relu(
tf.nn.conv2d(
input_tensor,
weight_bias[0],
strides=[1, 1, 1, 1],
padding="SAME",
name=name,
)
+ weight_bias[1]
)
elif layer_type == "pool":
return tf.nn.avg_pool(
input_tensor, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME"
)
else:
raise ValueError("Unsupported layer %s" % layer_type)
def _get_weight_and_bias(
vgg_layers: np.ndarray, index: int
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Get the weight and bias of a specific layer from the VGG pretrained model.
Args:
vgg_layers: An array, the VGG pretrained model.
index: An integer, index of the layer.
Returns:
weights: A tensor.
bias: A tensor.
"""
weights = vgg_layers[index][0][0][2][0][0]
weights = tf.constant(weights)
bias = vgg_layers[index][0][0][2][0][1]
bias = tf.constant(np.reshape(bias, (bias.size)))
return weights, bias
def _build_vgg19(image: tf.Tensor, model_filepath: str) -> Dict[str, tf.Tensor]:
"""Builds the VGG network given the model weights.
The weights are loaded only for the first time this code is invoked.
Args:
image: A tensor, input image.
model_filepath: A string, path to the VGG pretrained model.
Returns:
net: A dict mapping a layer name to a tensor.
"""
with tf.variable_scope("vgg", reuse=True):
net = {}
if not hasattr(_build_vgg19, "vgg_rawnet"):
with tf.io.gfile.GFile(model_filepath, "rb") as f:
_build_vgg19.vgg_rawnet = sio.loadmat(f)
vgg_layers = _build_vgg19.vgg_rawnet["layers"][0]
imagenet_mean = tf.constant([123.6800, 116.7790, 103.9390], shape=[1, 1, 1, 3])
net["input"] = image - imagenet_mean
net["conv1_1"] = _build_net(
"conv",
net["input"],
_get_weight_and_bias(vgg_layers, 0),
name="vgg_conv1_1",
)
net["conv1_2"] = _build_net(
"conv",
net["conv1_1"],
_get_weight_and_bias(vgg_layers, 2),
name="vgg_conv1_2",
)
net["pool1"] = _build_net("pool", net["conv1_2"])
net["conv2_1"] = _build_net(
"conv",
net["pool1"],
_get_weight_and_bias(vgg_layers, 5),
name="vgg_conv2_1",
)
net["conv2_2"] = _build_net(
"conv",
net["conv2_1"],
_get_weight_and_bias(vgg_layers, 7),
name="vgg_conv2_2",
)
net["pool2"] = _build_net("pool", net["conv2_2"])
net["conv3_1"] = _build_net(
"conv",
net["pool2"],
_get_weight_and_bias(vgg_layers, 10),
name="vgg_conv3_1",
)
net["conv3_2"] = _build_net(
"conv",
net["conv3_1"],
_get_weight_and_bias(vgg_layers, 12),
name="vgg_conv3_2",
)
net["conv3_3"] = _build_net(
"conv",
net["conv3_2"],
_get_weight_and_bias(vgg_layers, 14),
name="vgg_conv3_3",
)
net["conv3_4"] = _build_net(
"conv",
net["conv3_3"],
_get_weight_and_bias(vgg_layers, 16),
name="vgg_conv3_4",
)
net["pool3"] = _build_net("pool", net["conv3_4"])
net["conv4_1"] = _build_net(
"conv",
net["pool3"],
_get_weight_and_bias(vgg_layers, 19),
name="vgg_conv4_1",
)
net["conv4_2"] = _build_net(
"conv",
net["conv4_1"],
_get_weight_and_bias(vgg_layers, 21),
name="vgg_conv4_2",
)
net["conv4_3"] = _build_net(
"conv",
net["conv4_2"],
_get_weight_and_bias(vgg_layers, 23),
name="vgg_conv4_3",
)
net["conv4_4"] = _build_net(
"conv",
net["conv4_3"],
_get_weight_and_bias(vgg_layers, 25),
name="vgg_conv4_4",
)
net["pool4"] = _build_net("pool", net["conv4_4"])
net["conv5_1"] = _build_net(
"conv",
net["pool4"],
_get_weight_and_bias(vgg_layers, 28),
name="vgg_conv5_1",
)
net["conv5_2"] = _build_net(
"conv",
net["conv5_1"],
_get_weight_and_bias(vgg_layers, 30),
name="vgg_conv5_2",
)
return net
def _compute_error(
fake: tf.Tensor, real: tf.Tensor, mask: Optional[tf.Tensor] = None
) -> tf.Tensor:
"""Computes the L1 loss and reweights by the mask."""
if mask is None:
return tf.reduce_mean(tf.abs(fake - real))
else:
# Resizes mask to the same size as the input.
size = (tf.shape(fake)[1], tf.shape(fake)[2])
resized_mask = tf.image.resize(
mask, size, method=tf.image.ResizeMethod.BILINEAR
)
return tf.reduce_mean(tf.abs(fake - real) * resized_mask)
# Normalized VGG loss (from
# https://github.com/CQFIO/PhotographicImageSynthesis)
def vgg_loss(
image: tf.Tensor,
reference: tf.Tensor,
vgg_model_file: str,
weights: Optional[Sequence[float]] = None,
mask: Optional[tf.Tensor] = None,
) -> tf.Tensor:
"""Computes the VGG loss for an image pair.
The VGG loss is the average feature vector difference between the two images.
The input images must be in [0, 1] range in (B, H, W, 3) RGB format and
the recommendation seems to be to have them in gamma space.
The pretrained weights are publicly available in
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat
Args:
image: A tensor, typically the prediction from a network.
reference: A tensor, the image to compare against, i.e. the golden image.
vgg_model_file: A string, filename for the VGG 19 network weights in MATLAB
format.
weights: A list of float, optional weights for the layers. The defaults are
from Qifeng Chen and Vladlen Koltun, "Photographic image synthesis with
cascaded refinement networks," ICCV 2017.
mask: An optional image-shape and single-channel tensor, the mask values are
per-pixel weights to be applied on the losses. The mask will be resized to
the same spatial resolution with the feature maps before been applied to
the losses. When the mask value is zero, pixels near the boundary of the
mask can still influence the loss if they fall into the receptive field of
the VGG convolutional layers.
Returns:
vgg_loss: The linear combination of losses from five VGG layers.
"""
if not weights:
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10.0 / 1.5]
vgg_ref = _build_vgg19(reference * 255.0, vgg_model_file)
vgg_img = _build_vgg19(image * 255.0, vgg_model_file)
p1 = _compute_error(vgg_ref["conv1_2"], vgg_img["conv1_2"], mask) * weights[0]
p2 = _compute_error(vgg_ref["conv2_2"], vgg_img["conv2_2"], mask) * weights[1]
p3 = _compute_error(vgg_ref["conv3_2"], vgg_img["conv3_2"], mask) * weights[2]
p4 = _compute_error(vgg_ref["conv4_2"], vgg_img["conv4_2"], mask) * weights[3]
p5 = _compute_error(vgg_ref["conv5_2"], vgg_img["conv5_2"], mask) * weights[4]
final_loss = p1 + p2 + p3 + p4 + p5
# Scale to range [0..1].
final_loss /= 255.0
return final_loss
def _compute_gram_matrix(input_features: tf.Tensor, mask: tf.Tensor) -> tf.Tensor:
"""Computes Gram matrix of `input_features`.
Gram matrix described in https://en.wikipedia.org/wiki/Gramian_matrix.
Args:
input_features: A tf.Tensor of shape (B, H, W, C) representing a feature map
obtained by a convolutional layer of a VGG network.
mask: A tf.Tensor of shape (B, H, W, 1) representing the per-pixel weights
to be applied on the `input_features`. The mask will be resized to the
same spatial resolution as the `input_featues`. When the mask value is
zero, pixels near the boundary of the mask can still influence the loss if
they fall into the receptive field of the VGG convolutional layers.
Returns:
A tf.Tensor of shape (B, C, C) representing the gram matrix of the masked
`input_features`.
"""
# _, h, w, c = tuple(
# [
# i if (isinstance(i, int) or i is None) else i.value
# for i in tf.shape(input_features)
# ]
# )
_, h, w, c = (
tf.shape(input_features)[0],
tf.shape(input_features)[1],
tf.shape(input_features)[2],
tf.shape(input_features)[3],
)
if mask is None:
reshaped_features = tf.reshape(input_features, (-1, h * w, c))
else:
# Resize mask to match the shape of `input_features`
resized_mask = tf.image.resize(
mask, (h, w), method=tf.image.ResizeMethod.BILINEAR
)
reshaped_features = tf.reshape(input_features * resized_mask, (-1, h * w, c))
return tf.matmul(reshaped_features, reshaped_features, transpose_a=True) / tf.cast(
tf.multiply(h, w), tf.float32
)
def style_loss(
image: tf.Tensor,
reference: tf.Tensor,
vgg_model_file: str,
weights: Optional[Sequence[float]] = None,
mask: Optional[tf.Tensor] = None,
) -> tf.Tensor:
"""Computes style loss as used in `A Neural Algorithm of Artistic Style`.
Based on the work in https://github.com/cysmith/neural-style-tf. Weights are
first initilaized to the inverse of the number of elements in each VGG layer
considerd. After 1.5M iterations, they are rescaled to normalize the
contribution of the Style loss to be equal to other losses (L1/VGG). This is
based on the works of image inpainting (https://arxiv.org/abs/1804.07723)
and frame prediction (https://arxiv.org/abs/1811.00684).
The style loss is the average gram matrix difference between `image` and
`reference`. The gram matrix is the inner product of a feature map of shape
(B, H*W, C) with itself. Results in a symmetric gram matrix shaped (B, C, C).
The input images must be in [0, 1] range in (B, H, W, 3) RGB format and
the recommendation seems to be to have them in gamma space.
The pretrained weights are publicly available in
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat
Args:
image: A tensor, typically the prediction from a network.
reference: A tensor, the image to compare against, i.e. the golden image.
vgg_model_file: A string, filename for the VGG 19 network weights in MATLAB
format.
weights: A list of float, optional weights for the layers. The defaults are
from Qifeng Chen and Vladlen Koltun, "Photographic image synthesis with
cascaded refinement networks," ICCV 2017.
mask: An optional image-shape and single-channel tensor, the mask values are
per-pixel weights to be applied on the losses. The mask will be resized to
the same spatial resolution with the feature maps before been applied to
the losses. When the mask value is zero, pixels near the boundary of the
mask can still influence the loss if they fall into the receptive field of
the VGG convolutional layers.
Returns:
Style loss, a linear combination of gram matrix L2 differences of from five
VGG layer features.
"""
if not weights:
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10.0 / 1.5]
vgg_ref = _build_vgg19(reference * 255.0, vgg_model_file)
vgg_img = _build_vgg19(image * 255.0, vgg_model_file)
p1 = (
tf.reduce_mean(
tf.squared_difference(
_compute_gram_matrix(vgg_ref["conv1_2"] / 255.0, mask),
_compute_gram_matrix(vgg_img["conv1_2"] / 255.0, mask),
)
)
* weights[0]
)
p2 = (
tf.reduce_mean(
tf.squared_difference(
_compute_gram_matrix(vgg_ref["conv2_2"] / 255.0, mask),
_compute_gram_matrix(vgg_img["conv2_2"] / 255.0, mask),
)
)
* weights[1]
)
p3 = (
tf.reduce_mean(
tf.squared_difference(
_compute_gram_matrix(vgg_ref["conv3_2"] / 255.0, mask),
_compute_gram_matrix(vgg_img["conv3_2"] / 255.0, mask),
)
)
* weights[2]
)
p4 = (
tf.reduce_mean(
tf.squared_difference(
_compute_gram_matrix(vgg_ref["conv4_2"] / 255.0, mask),
_compute_gram_matrix(vgg_img["conv4_2"] / 255.0, mask),
)
)
* weights[3]
)
p5 = (
tf.reduce_mean(
tf.squared_difference(
_compute_gram_matrix(vgg_ref["conv5_2"] / 255.0, mask),
_compute_gram_matrix(vgg_img["conv5_2"] / 255.0, mask),
)
)
* weights[4]
)
final_loss = p1 + p2 + p3 + p4 + p5
return final_loss
|