File size: 6,152 Bytes
3be620b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os

import click
import omegaconf
import ray
from pyprojroot.pyprojroot import here
from ray import tune
from ray.train import Trainer
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.suggest import ConcurrencyLimiter
from ray.tune.suggest.optuna import OptunaSearch

from ganime.trainer.ganime import TrainableGANime

import os

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = "1, 2, 3, 4, 5, 6"


def get_metric_direction(metric: str):
    if "loss" in metric:
        return "min"
    else:
        raise ValueError(f"Unknown metric: {metric}")


def trial_name_id(trial):
    return f"{trial.trainable_name}"


def trial_dirname_creator(trial):
    return f"{trial.trial_id}"


def get_search_space(model):
    if model == "vqgan":
        return {
            # "beta": tune.uniform(0.1, 1.0),
            "num_embeddings": tune.choice([64, 128, 256]),
            "embedding_dim": tune.choice([128, 256, 512, 1024]),
            "z_channels": tune.choice([64, 128, 256]),
            "channels": tune.choice([64, 128, 256]),
            "channels_multiplier": tune.choice(
                [
                    [1, 2, 4],
                    [1, 1, 2, 2],
                    [1, 2, 2, 4],
                    [1, 1, 2, 2, 4],
                ]
            ),
            "attention_resolution": tune.choice([[16], [32], [16, 32]]),
            "batch_size": tune.choice([8, 16]),
            "dropout": tune.choice([0.0, 0.1, 0.2]),
            "weight": tune.quniform(0.1, 1.0, 0.1),
            "codebook_weight": tune.quniform(0.2, 2.0, 0.2),
            "perceptual_weight": tune.quniform(0.5, 5.0, 0.5),
            "gen_lr": tune.qloguniform(1e-5, 1e-3, 1e-5),
            "disc_lr": tune.qloguniform(1e-5, 1e-3, 1e-5),
            "gen_beta_1": tune.quniform(0.5, 0.9, 0.1),
            "gen_beta_2": tune.quniform(0.9, 0.999, 0.001),
            "disc_beta_1": tune.quniform(0.5, 0.9, 0.1),
            "disc_beta_2": tune.quniform(0.9, 0.999, 0.001),
            "gen_clip_norm": tune.choice([1.0, None]),
            "disc_clip_norm": tune.choice([1.0, None]),
        }
    elif model == "gpt":
        return {
            "remaining_frames_method": tune.choice(
                ["concat", "token_type_ids", "own_embeddings"]
            ),
            # "batch_size": tune.choice([8, 16]),
            "lr_max": tune.qloguniform(1e-5, 1e-3, 5e-5),
            "lr_start": tune.sample_from(lambda spec: spec.config.lr_max / 10),
            "perceptual_loss_weight": tune.quniform(0.0, 1.0, 0.1),
            "n_frames_before": tune.randint(1, 10),
        }


def tune_ganime(
    experiment_name: str,
    dataset_name: str,
    config_file: str,
    model: str,
    metric: str,
    epochs: int,
    num_samples: int,
    num_cpus: int,
    num_gpus: int,
    max_concurrent_trials: int,
):

    dataset_path = here("data")
    analysis = tune.run(
        TrainableGANime,
        name=experiment_name,
        search_alg=ConcurrencyLimiter(
            OptunaSearch(), max_concurrent=max_concurrent_trials
        ),
        scheduler=AsyncHyperBandScheduler(max_t=epochs, grace_period=5),
        metric=metric,
        mode=get_metric_direction(metric),
        num_samples=num_samples,
        stop={"training_iteration": epochs},
        local_dir="./ganime_results",
        config={
            "dataset_name": dataset_name,
            "dataset_path": dataset_path,
            "model": model,
            "config_file": config_file,
            "hyperparameters": get_search_space(model),
        },
        resources_per_trial={
            "cpu": num_cpus // max_concurrent_trials,
            "gpu": num_gpus / max_concurrent_trials,
        },
        trial_name_creator=trial_name_id,
        trial_dirname_creator=trial_dirname_creator,
    )
    best_loss = analysis.get_best_config(metric="total_loss", mode="min")
    # best_accuracy = analysis.get_best_config(metric="accuracy", mode="max")
    print(f"Best loss config: {best_loss}")
    # print(f"Best accuracy config: {best_accuracy}")
    return analysis


@click.command()
@click.option(
    "--dataset",
    type=click.Choice(
        ["moving_mnist_images", "kny_images", "kny_images_light"], case_sensitive=False
    ),
    default="kny_images_light",
    help="Dataset to use",
)
@click.option(
    "--model",
    type=click.Choice(["vqgan", "gpt"], case_sensitive=False),
    default="vqgan",
    help="Model to use",
)
@click.option(
    "--epochs",
    default=500,
    help="Number of epochs to run",
)
@click.option(
    "--num_samples",
    default=100,
    help="Total number of trials to run",
)
@click.option(
    "--num_cpus",
    default=64,
    help="Number of cpus to use",
)
@click.option(
    "--num_gpus",
    default=6,
    help="Number of gpus to use",
)
@click.option(
    "--max_concurrent_trials",
    default=6,
    help="Maximum number of concurrent trials",
)
@click.option(
    "--metric",
    type=click.Choice(
        ["total_loss", "reconstruction_loss", "vq_loss", "disc_loss"],
        case_sensitive=False,
    ),
    default="total_loss",
    help="The metric used to select the best trial",
)
@click.option(
    "--experiment_name",
    default="kny_images_light_v2",
    help="The name of the experiment for logging in Tensorboard",
)
@click.option(
    "--config_file",
    default="kny_image.yaml",
    help="The name of the config file located inside ./config",
)
def run(
    experiment_name: str,
    config_file: str,
    dataset: str,
    model: str,
    epochs: int,
    num_samples: int,
    num_cpus: int,
    num_gpus: int,
    max_concurrent_trials: int,
    metric: str,
):
    config_file = here(os.path.join("configs", config_file))

    ray.init(num_cpus=num_cpus, num_gpus=num_gpus)
    tune_ganime(
        experiment_name=experiment_name,
        dataset_name=dataset,
        config_file=config_file,
        model=model,
        epochs=epochs,
        num_samples=num_samples,
        num_cpus=num_cpus,
        num_gpus=num_gpus,
        max_concurrent_trials=max_concurrent_trials,
        metric=metric,
    )