GANime / app.py
Kurokabe's picture
Rename app to app.py
4eee7b5
raw
history blame
3.56 kB
import tempfile
import ffmpegio
import gradio as gr
import numpy as np
import omegaconf
import tensorflow as tf
from pyprojroot.pyprojroot import here
from huggingface_hub import hf_hub_url, hf_hub_download
from ganime.model.vqgan_clean.experimental.net2net_v3 import Net2Net
IMAGE_SHAPE = (64, 128, 3)
hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.data-00000-of-00001", subfolder="vqgan_kny_image_full")
hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.index", subfolder="vqgan_kny_image_full")
vqgan_path = hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint", subfolder="vqgan_kny_image_full")
hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.data-00000-of-00001", subfolder="ganime_kny_video_full")
hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.index", subfolder="ganime_kny_video_full")
gpt_path = hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint", subfolder="ganime_kny_video_full")
cfg = omegaconf.OmegaConf.load(here("configs/kny_video_gpt2_large_gradio.yaml"))
cfg["model"]["first_stage_config"]["checkpoint_path"] = vqgan_path + "/checkpoint"
cfg["model"]["transformer_config"]["checkpoint_path"] = gpt_path + "/checkpoint"
model = Net2Net(**cfg["model"], trainer_config=cfg["train"], num_replicas=1)
model.first_stage_model.build((20, *IMAGE_SHAPE))
# def save_video(video):
# b, f, h, w, c = 1, 20, 500, 500, 3
# # filename = output_file.name
# filename = "./test_video.mp4"
# images = []
# for i in range(f):
# # image = video[0][i].numpy()
# # image = 255 * image # Now scale by 255
# # image = image.astype(np.uint8)
# images.append(np.random.randint(0, 255, (h, w, c), dtype=np.uint8))
# ffmpegio.video.write(filename, 20, np.array(images), overwrite=True)
# return filename
def save_video(video):
output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
b, f, h, w, c = video.shape
filename = output_file.name
video = video.numpy()
video = video * 255
video = video.astype(np.uint8)
ffmpegio.video.write(filename, 20, video, overwrite=True)
return filename
def resize_if_necessary(image):
if image.shape[0] != 64 and image.shape[1] != 128:
image = tf.image.resize(image, (64, 128))
return image
def normalize(image):
image = (tf.cast(image, tf.float32) / 127.5) - 1
return image
def generate(first, last, n_frames):
# n_frames = 20
n_frames = int(n_frames)
first = resize_if_necessary(first)
last = resize_if_necessary(last)
first = normalize(first)
last = normalize(last)
data = {
"first_frame": np.expand_dims(first, axis=0),
"last_frame": np.expand_dims(last, axis=0),
"y": None,
"n_frames": [n_frames],
"remaining_frames": [list(reversed(range(n_frames)))],
}
generated = model.predict(data)
return save_video(generated)
gr.Interface(
generate,
inputs=[
gr.Image(label="Upload the first image"),
gr.Image(label="Upload the last image"),
gr.Slider(
label="Number of frame to generate",
minimum=15,
maximum=100,
value=15,
step=1,
),
],
outputs="video",
title="Generate a video from the first and last frame",
).launch(share=True)