GANime / ganime /utils /callbacks.py
Kurokabe's picture
Upload 84 files
3be620b
import io
import os
from datetime import datetime
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from ganime.visualization.images import display_true_pred, unnormalize_if_necessary
def get_logdir(parent_folder: str, experiment_name: Optional[str] = None) -> str:
"""Get the logdir used for logging in tensorboard. The logdir will be the parent folder with the experiment name and the current date and time.
Args:
parent_folder (str): The parent folder of the logdir
experiment_name (str, optional): Optinal name of the experiment. Defaults to "".
Returns:
str: The path of the logdir that can be used by Tensorboard
"""
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
sub_folder = (
f"{experiment_name}_{current_time}" if experiment_name else current_time
)
logdir = os.path.join(parent_folder, sub_folder)
return logdir
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format="png")
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
class TensorboardImage(tf.keras.callbacks.Callback):
def __init__(
self,
logdir: str,
train: np.array,
validation: np.array = None,
n_images: int = 8,
):
super().__init__()
self.logdir = logdir
self.train = train
self.validation = validation
self.file_writer = tf.summary.create_file_writer(logdir)
self.n_images = n_images
def on_epoch_end(self, epoch, logs):
train_X, train_y = self.train
train_X, train_y = self.truncate_X_y(train_X, train_y, self.n_images)
train_pred = self.model.predict(train_X)
self.write_to_tensorboard(train_y, train_pred, "Training data", epoch)
if self.validation is not None:
validation_X, validation_y = self.validation
validation_X, validation_y = self.truncate_X_y(
validation_X, validation_y, self.n_images
)
validation_pred = self.model.predict(validation_X)
self.write_to_tensorboard(
validation_y, validation_pred, "Validation data", epoch
)
def truncate_X_y(self, X, y, n_images):
"""Truncate the X and y arrays to the first n_images."""
X = X[:n_images]
y = y[:n_images]
return X, y
def write_to_tensorboard(self, y_true, y_pred, tag, step):
with self.file_writer.as_default():
tf.summary.image(
tag,
plot_to_image(display_true_pred(y_true, y_pred, n_cols=len(y_true))),
step=step,
)
class TensorboardVideo(tf.keras.callbacks.Callback):
def __init__(
self,
logdir: str,
train: np.array,
validation: np.array = None,
n_videos: int = 3,
):
super().__init__()
self.logdir = logdir
self.train = train
self.validation = validation
self.file_writer = tf.summary.create_file_writer(logdir)
self.n_videos = n_videos
def on_epoch_end(self, epoch, logs):
# train_X, train_y = self.train
# train_X, train_y = self.truncate_X_y(train_X, train_y, self.n_videos)
train_pred = self.model.predict(self.train)
self.write_to_tensorboard(
unnormalize_if_necessary(self.train["y"]),
train_pred,
"Training data",
epoch,
)
if self.validation is not None:
# validation_X, validation_y = self.validation
# validation_X, validation_y = self.truncate_X_y(
# validation_X, validation_y, self.n_videos
# )
validation_pred = self.model.predict(self.validation)
self.write_to_tensorboard(
unnormalize_if_necessary(self.validation["y"]),
validation_pred,
"Validation data",
epoch,
)
def truncate_X_y(self, X, y, n_videos):
"""Truncate the X and y arrays to the first n_videos."""
X = X[:n_videos]
y = y[:n_videos]
return X, y
def write_to_tensorboard(self, y_true, y_pred, tag, step):
stacked = tf.concat([y_pred, y_true], axis=2)
self.video_summary(tag, stacked, step)
self.image_summary(tag + "/images", y_true, y_pred, step)
def image_summary(self, tag, y_true, y_pred, step):
batch, n_frames, height, width, channels = y_true.shape
images = np.empty(
(batch * 2, n_frames, height, width, channels), dtype=np.float32
)
images[0::2] = y_pred
images[1::2] = y_true
images = tf.transpose(images, (0, 2, 1, 3, 4))
images = tf.reshape(images, (height * batch * 2, width * n_frames, channels))
with self.file_writer.as_default():
tf.summary.image(tag, [images], step=step)
def add_red_border(self, image_batch):
image_batch = image_batch.copy()
dtype = image_batch.dtype
min_value = 0
max_value = 1 if dtype in [np.float16, np.float32, np.float64] else 255
# top
image_batch[:, 0:2, :, 0] = max_value
image_batch[:, 0:2, :, 1] = min_value
image_batch[:, 0:2, :, 2] = min_value
# bottom
image_batch[:, -2:, :, 0] = max_value
image_batch[:, -2:, :, 1] = min_value
image_batch[:, -2:, :, 2] = min_value
# left
image_batch[:, :, 0:2, 0] = max_value
image_batch[:, :, 0:2, 1] = min_value
image_batch[:, :, 0:2, 2] = min_value
# right
image_batch[:, :, -2:, 0] = max_value
image_batch[:, :, -2:, 1] = min_value
image_batch[:, :, -2:, 2] = min_value
return image_batch
def video_summary(self, name, video, step=None, fps=10):
name = tf.constant(name).numpy().decode("utf-8")
video = np.array(video)
if video.dtype in (np.float32, np.float64):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
# video[:, 0] = self.add_red_border(video[:, 0])
with self.file_writer.as_default():
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf.compat.v1.Summary()
image = tf.compat.v1.Summary.Image(
height=B * H, width=T * W, colorspace=C
)
image.encoded_image_string = self.encode_gif(frames, fps)
summary.value.add(tag=name + "/gif", image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print("GIF summaries require ffmpeg in $PATH.", e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name + "/grid", frames, step)
def encode_gif(self, frames, fps):
from subprocess import PIPE, Popen
h, w, c = frames[0].shape
pxfmt = {1: "gray", 3: "rgb24"}[c]
cmd = " ".join(
[
f"ffmpeg -y -f rawvideo -vcodec rawvideo",
f"-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex",
f"[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse",
f"-r {fps:.02f} -f gif -",
]
)
proc = Popen(cmd.split(" "), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError("\n".join([" ".join(cmd), err.decode("utf8")]))
del proc
return out