Kurokabe commited on
Commit
0100a80
1 Parent(s): 0828234

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -108
app.py DELETED
@@ -1,108 +0,0 @@
1
- import tempfile
2
-
3
- import ffmpegio
4
- import gradio as gr
5
- import numpy as np
6
- import omegaconf
7
- import tensorflow as tf
8
- from pyprojroot.pyprojroot import here
9
- from huggingface_hub import hf_hub_url, hf_hub_download
10
-
11
- from ganime.model.vqgan_clean.experimental.net2net_v3 import Net2Net
12
-
13
- IMAGE_SHAPE = (64, 128, 3)
14
-
15
-
16
- hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.data-00000-of-00001", subfolder="vqgan_kny_image_full")
17
- hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.index", subfolder="vqgan_kny_image_full")
18
- vqgan_path = hf_hub_download(repo_id="Kurokabe/VQGAN_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint", subfolder="vqgan_kny_image_full")
19
-
20
-
21
-
22
- hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.data-00000-of-00001", subfolder="ganime_kny_video_full")
23
- hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint.index", subfolder="ganime_kny_video_full")
24
- gpt_path = hf_hub_download(repo_id="Kurokabe/GANime_Kimetsu-no-yaiba_Tensorflow", filename="checkpoint", subfolder="ganime_kny_video_full")
25
-
26
- cfg = omegaconf.OmegaConf.load(here("configs/kny_video_gpt2_large_gradio.yaml"))
27
- cfg["model"]["first_stage_config"]["checkpoint_path"] = vqgan_path + "/checkpoint"
28
- cfg["model"]["transformer_config"]["checkpoint_path"] = gpt_path + "/checkpoint"
29
-
30
- model = Net2Net(**cfg["model"], trainer_config=cfg["train"], num_replicas=1)
31
- model.first_stage_model.build((20, *IMAGE_SHAPE))
32
-
33
-
34
- # def save_video(video):
35
- # b, f, h, w, c = 1, 20, 500, 500, 3
36
-
37
- # # filename = output_file.name
38
- # filename = "./test_video.mp4"
39
- # images = []
40
- # for i in range(f):
41
- # # image = video[0][i].numpy()
42
- # # image = 255 * image # Now scale by 255
43
- # # image = image.astype(np.uint8)
44
- # images.append(np.random.randint(0, 255, (h, w, c), dtype=np.uint8))
45
-
46
- # ffmpegio.video.write(filename, 20, np.array(images), overwrite=True)
47
- # return filename
48
-
49
-
50
- def save_video(video):
51
- output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
52
- b, f, h, w, c = video.shape
53
-
54
- filename = output_file.name
55
- video = video.numpy()
56
- video = video * 255
57
- video = video.astype(np.uint8)
58
- ffmpegio.video.write(filename, 20, video, overwrite=True)
59
- return filename
60
-
61
-
62
- def resize_if_necessary(image):
63
- if image.shape[0] != 64 and image.shape[1] != 128:
64
- image = tf.image.resize(image, (64, 128))
65
- return image
66
-
67
-
68
- def normalize(image):
69
- image = (tf.cast(image, tf.float32) / 127.5) - 1
70
-
71
- return image
72
-
73
-
74
- def generate(first, last, n_frames):
75
- # n_frames = 20
76
- n_frames = int(n_frames)
77
- first = resize_if_necessary(first)
78
- last = resize_if_necessary(last)
79
- first = normalize(first)
80
- last = normalize(last)
81
- data = {
82
- "first_frame": np.expand_dims(first, axis=0),
83
- "last_frame": np.expand_dims(last, axis=0),
84
- "y": None,
85
- "n_frames": [n_frames],
86
- "remaining_frames": [list(reversed(range(n_frames)))],
87
- }
88
- generated = model.predict(data)
89
-
90
- return save_video(generated)
91
-
92
-
93
- gr.Interface(
94
- generate,
95
- inputs=[
96
- gr.Image(label="Upload the first image"),
97
- gr.Image(label="Upload the last image"),
98
- gr.Slider(
99
- label="Number of frame to generate",
100
- minimum=15,
101
- maximum=100,
102
- value=15,
103
- step=1,
104
- ),
105
- ],
106
- outputs="video",
107
- title="Generate a video from the first and last frame",
108
- ).launch(share=True)