Kolors-Controlnet / basicsr /data /reds_dataset.py
lixiang46
fix basicsr bug
a64b7d4
import numpy as np
import random
import torch
from pathlib import Path
from torch.utils import data as data
from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.flow_util import dequantize_flow
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class REDSDataset(data.Dataset):
"""REDS dataset for training.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_REDS_GT.txt
Each line contains:
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
a white space.
Examples:
000 100 (720,1280,3)
001 100 (720,1280,3)
...
Key examples: "000/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
dataroot_flow (str, optional): Data root path for flow.
meta_info_file (str): Path for meta information file.
val_partition (str): Validation partition types. 'REDS4' or 'official'.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(REDSDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None
assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}')
self.num_frame = opt['num_frame']
self.num_half_frames = opt['num_frame'] // 2
self.keys = []
with open(opt['meta_info_file'], 'r') as fin:
for line in fin:
folder, frame_num, _ = line.split(' ')
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
# remove the video clips used in validation
if opt['val_partition'] == 'REDS4':
val_partition = ['000', '011', '015', '020']
elif opt['val_partition'] == 'official':
val_partition = [f'{v:03d}' for v in range(240, 270)]
else:
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
f"Supported ones are ['official', 'REDS4'].")
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
if self.flow_root is not None:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
else:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# temporal augmentation configs
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
interval_str = ','.join(str(x) for x in opt['interval_list'])
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip_name, frame_name = key.split('/') # key example: 000/00000000
center_frame_idx = int(frame_name)
# determine the neighboring frames
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
start_frame_idx = center_frame_idx - self.num_half_frames * interval
end_frame_idx = center_frame_idx + self.num_half_frames * interval
# each clip has 100 frames starting from 0 to 99
while (start_frame_idx < 0) or (end_frame_idx > 99):
center_frame_idx = random.randint(0, 99)
start_frame_idx = (center_frame_idx - self.num_half_frames * interval)
end_frame_idx = center_frame_idx + self.num_half_frames * interval
frame_name = f'{center_frame_idx:08d}'
neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval))
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}')
# get the GT frame (as the center frame)
if self.is_lmdb:
img_gt_path = f'{clip_name}/{frame_name}'
else:
img_gt_path = self.gt_root / clip_name / f'{frame_name}.png'
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# get the neighboring LQ frames
img_lqs = []
for neighbor in neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip_name}/{neighbor:08d}'
else:
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# get flows
if self.flow_root is not None:
img_flows = []
# read previous flows
for i in range(self.num_half_frames, 0, -1):
if self.is_lmdb:
flow_path = f'{clip_name}/{frame_name}_p{i}'
else:
flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png')
img_bytes = self.file_client.get(flow_path, 'flow')
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
dx, dy = np.split(cat_flow, 2, axis=0)
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
img_flows.append(flow)
# read next flows
for i in range(1, self.num_half_frames + 1):
if self.is_lmdb:
flow_path = f'{clip_name}/{frame_name}_n{i}'
else:
flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png')
img_bytes = self.file_client.get(flow_path, 'flow')
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
dx, dy = np.split(cat_flow, 2, axis=0)
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
img_flows.append(flow)
# for random crop, here, img_flows and img_lqs have the same
# spatial size
img_lqs.extend(img_flows)
# randomly crop
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
if self.flow_root is not None:
img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:]
# augmentation - flip, rotate
img_lqs.append(img_gt)
if self.flow_root is not None:
img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows)
else:
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[0:-1], dim=0)
img_gt = img_results[-1]
if self.flow_root is not None:
img_flows = img2tensor(img_flows)
# add the zero center flow
img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0]))
img_flows = torch.stack(img_flows, dim=0)
# img_lqs: (t, c, h, w)
# img_flows: (t, 2, h, w)
# img_gt: (c, h, w)
# key: str
if self.flow_root is not None:
return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key}
else:
return {'lq': img_lqs, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class REDSRecurrentDataset(data.Dataset):
"""REDS dataset for training recurrent networks.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_REDS_GT.txt
Each line contains:
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
a white space.
Examples:
000 100 (720,1280,3)
001 100 (720,1280,3)
...
Key examples: "000/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
dataroot_flow (str, optional): Data root path for flow.
meta_info_file (str): Path for meta information file.
val_partition (str): Validation partition types. 'REDS4' or 'official'.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(REDSRecurrentDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
self.num_frame = opt['num_frame']
self.keys = []
with open(opt['meta_info_file'], 'r') as fin:
for line in fin:
folder, frame_num, _ = line.split(' ')
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
# remove the video clips used in validation
if opt['val_partition'] == 'REDS4':
val_partition = ['000', '011', '015', '020']
elif opt['val_partition'] == 'official':
val_partition = [f'{v:03d}' for v in range(240, 270)]
else:
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
f"Supported ones are ['official', 'REDS4'].")
if opt['test_mode']:
self.keys = [v for v in self.keys if v.split('/')[0] in val_partition]
else:
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
if hasattr(self, 'flow_root') and self.flow_root is not None:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
else:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# temporal augmentation configs
self.interval_list = opt.get('interval_list', [1])
self.random_reverse = opt.get('random_reverse', False)
interval_str = ','.join(str(x) for x in self.interval_list)
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip_name, frame_name = key.split('/') # key example: 000/00000000
# determine the neighboring frames
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
start_frame_idx = int(frame_name)
if start_frame_idx > 100 - self.num_frame * interval:
start_frame_idx = random.randint(0, 100 - self.num_frame * interval)
end_frame_idx = start_frame_idx + self.num_frame * interval
neighbor_list = list(range(start_frame_idx, end_frame_idx, interval))
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
# get the neighboring LQ and GT frames
img_lqs = []
img_gts = []
for neighbor in neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip_name}/{neighbor:08d}'
img_gt_path = f'{clip_name}/{neighbor:08d}'
else:
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png'
# get LQ
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# get GT
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
img_gts.append(img_gt)
# randomly crop
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.extend(img_gts)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0)
img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)