Spaces:
Runtime error
Runtime error
lixiang46
commited on
Commit
·
093995d
1
Parent(s):
0eb9c4d
update inpainting
Browse files- README.md +1 -1
- app.py +37 -85
- kolors/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/models/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/models/__pycache__/configuration_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/modeling_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/tokenization_chatglm.cpython-38.pyc +0 -0
- kolors/models/__pycache__/unet_2d_condition.cpython-38.pyc +0 -0
- kolors/models/controlnet.py +887 -0
- kolors/pipelines/__pycache__/__init__.cpython-38.pyc +0 -0
- kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256.cpython-38.pyc +0 -0
- kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.cpython-38.pyc +0 -0
- kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py +1365 -0
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py +1790 -0
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Kolors-Inpainting
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
|
|
|
| 1 |
---
|
| 2 |
title: Kolors-Inpainting
|
| 3 |
+
emoji: 🎨
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
app.py
CHANGED
|
@@ -2,61 +2,39 @@ import spaces
|
|
| 2 |
import random
|
| 3 |
import torch
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
-
from
|
| 6 |
-
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
|
| 7 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 8 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
| 9 |
-
from kolors.models import unet_2d_condition
|
| 10 |
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
| 11 |
import gradio as gr
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
device = "cuda"
|
| 15 |
-
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
| 19 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
| 20 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
| 21 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 22 |
-
|
| 23 |
-
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
| 24 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
|
| 25 |
-
ip_img_size = 336
|
| 26 |
-
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
| 27 |
-
|
| 28 |
-
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
|
| 29 |
-
vae=vae,
|
| 30 |
-
text_encoder=text_encoder,
|
| 31 |
-
tokenizer=tokenizer,
|
| 32 |
-
unet=unet_t2i,
|
| 33 |
-
scheduler=scheduler,
|
| 34 |
-
force_zeros_for_empty_prompt=False
|
| 35 |
-
).to(device)
|
| 36 |
|
| 37 |
-
|
| 38 |
vae=vae,
|
| 39 |
text_encoder=text_encoder,
|
| 40 |
tokenizer=tokenizer,
|
| 41 |
-
unet=
|
| 42 |
-
scheduler=scheduler
|
| 43 |
-
|
| 44 |
-
feature_extractor=clip_image_processor,
|
| 45 |
-
force_zeros_for_empty_prompt=False
|
| 46 |
-
).to(device)
|
| 47 |
-
|
| 48 |
-
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
|
| 49 |
-
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
MAX_SEED = np.iinfo(np.int32).max
|
| 54 |
MAX_IMAGE_SIZE = 1024
|
| 55 |
|
| 56 |
@spaces.GPU
|
| 57 |
def infer(prompt,
|
| 58 |
-
|
| 59 |
-
|
| 60 |
negative_prompt = "",
|
| 61 |
seed = 0,
|
| 62 |
randomize_seed = False,
|
|
@@ -69,41 +47,23 @@ def infer(prompt,
|
|
| 69 |
seed = random.randint(0, MAX_SEED)
|
| 70 |
generator = torch.Generator().manual_seed(seed)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
image =
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
pipe_i2i.image_encoder = image_encoder
|
| 88 |
-
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
|
| 89 |
-
image = pipe_i2i(
|
| 90 |
-
prompt=prompt ,
|
| 91 |
-
ip_adapter_image=[ip_adapter_image],
|
| 92 |
-
negative_prompt=negative_prompt,
|
| 93 |
-
height=height,
|
| 94 |
-
width=width,
|
| 95 |
-
num_inference_steps=num_inference_steps,
|
| 96 |
-
guidance_scale=guidance_scale,
|
| 97 |
-
num_images_per_prompt=1,
|
| 98 |
-
generator=generator
|
| 99 |
-
).images[0]
|
| 100 |
-
return image
|
| 101 |
|
| 102 |
examples = [
|
| 103 |
-
["一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”", None, None],
|
| 104 |
-
["3D anime style, hyperrealistic oil painting, dolphin leaping out of the water", None, None],
|
| 105 |
-
["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5],
|
| 106 |
-
["A cute dog is running", "image/test_ip2.png", 0.5]
|
| 107 |
]
|
| 108 |
|
| 109 |
css="""
|
|
@@ -133,12 +93,13 @@ with gr.Blocks(css=css) as Kolors:
|
|
| 133 |
lines=2
|
| 134 |
)
|
| 135 |
with gr.Row():
|
| 136 |
-
|
| 137 |
with gr.Accordion("Advanced Settings", open=False):
|
| 138 |
negative_prompt = gr.Textbox(
|
| 139 |
label="Negative prompt",
|
| 140 |
placeholder="Enter a negative prompt",
|
| 141 |
visible=True,
|
|
|
|
| 142 |
)
|
| 143 |
seed = gr.Slider(
|
| 144 |
label="Seed",
|
|
@@ -178,32 +139,23 @@ with gr.Blocks(css=css) as Kolors:
|
|
| 178 |
step=1,
|
| 179 |
value=25,
|
| 180 |
)
|
| 181 |
-
with gr.Row():
|
| 182 |
-
ip_adapter_scale = gr.Slider(
|
| 183 |
-
label="Image influence scale",
|
| 184 |
-
info="Use 1 for creating variations",
|
| 185 |
-
minimum=0.0,
|
| 186 |
-
maximum=1.0,
|
| 187 |
-
step=0.05,
|
| 188 |
-
value=0.5,
|
| 189 |
-
)
|
| 190 |
with gr.Row():
|
| 191 |
run_button = gr.Button("Run")
|
| 192 |
|
| 193 |
with gr.Column(elem_id="col-right"):
|
| 194 |
result = gr.Image(label="Result", show_label=False)
|
| 195 |
|
| 196 |
-
with gr.Row():
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
|
| 204 |
run_button.click(
|
| 205 |
fn = infer,
|
| 206 |
-
inputs = [prompt,
|
| 207 |
outputs = [result]
|
| 208 |
)
|
| 209 |
|
|
|
|
| 2 |
import random
|
| 3 |
import torch
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
|
|
|
|
| 6 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 7 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
|
|
|
| 8 |
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
| 9 |
import gradio as gr
|
| 10 |
import numpy as np
|
| 11 |
|
| 12 |
device = "cuda"
|
| 13 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
|
| 14 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
|
|
|
|
|
|
|
| 15 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
| 16 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
| 17 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 18 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
pipe = StableDiffusionXLInpaintPipeline(
|
| 21 |
vae=vae,
|
| 22 |
text_encoder=text_encoder,
|
| 23 |
tokenizer=tokenizer,
|
| 24 |
+
unet=unet,
|
| 25 |
+
scheduler=scheduler
|
| 26 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
pipe.to(device)
|
| 29 |
+
pipe.enable_attention_slicing()
|
| 30 |
|
| 31 |
MAX_SEED = np.iinfo(np.int32).max
|
| 32 |
MAX_IMAGE_SIZE = 1024
|
| 33 |
|
| 34 |
@spaces.GPU
|
| 35 |
def infer(prompt,
|
| 36 |
+
image,
|
| 37 |
+
# mask_image,
|
| 38 |
negative_prompt = "",
|
| 39 |
seed = 0,
|
| 40 |
randomize_seed = False,
|
|
|
|
| 47 |
seed = random.randint(0, MAX_SEED)
|
| 48 |
generator = torch.Generator().manual_seed(seed)
|
| 49 |
|
| 50 |
+
result = pipe(
|
| 51 |
+
prompt = prompt,
|
| 52 |
+
image = image,
|
| 53 |
+
mask_image = mask_image,
|
| 54 |
+
height=height,
|
| 55 |
+
width=width,
|
| 56 |
+
guidance_scale = guidance_scale,
|
| 57 |
+
generator= generator,
|
| 58 |
+
num_inference_steps= num_inference_steps,
|
| 59 |
+
negative_prompt = negative_prompt,
|
| 60 |
+
num_images_per_prompt = 1,
|
| 61 |
+
strength = 0.999
|
| 62 |
+
).images[0]
|
| 63 |
+
|
| 64 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
]
|
| 68 |
|
| 69 |
css="""
|
|
|
|
| 93 |
lines=2
|
| 94 |
)
|
| 95 |
with gr.Row():
|
| 96 |
+
image = gr.Image(source='upload', tool='sketch', type="pil", label="Image to Inpaint")
|
| 97 |
with gr.Accordion("Advanced Settings", open=False):
|
| 98 |
negative_prompt = gr.Textbox(
|
| 99 |
label="Negative prompt",
|
| 100 |
placeholder="Enter a negative prompt",
|
| 101 |
visible=True,
|
| 102 |
+
value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量'
|
| 103 |
)
|
| 104 |
seed = gr.Slider(
|
| 105 |
label="Seed",
|
|
|
|
| 139 |
step=1,
|
| 140 |
value=25,
|
| 141 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Row():
|
| 143 |
run_button = gr.Button("Run")
|
| 144 |
|
| 145 |
with gr.Column(elem_id="col-right"):
|
| 146 |
result = gr.Image(label="Result", show_label=False)
|
| 147 |
|
| 148 |
+
# with gr.Row():
|
| 149 |
+
# gr.Examples(
|
| 150 |
+
# fn = infer,
|
| 151 |
+
# examples = examples,
|
| 152 |
+
# inputs = [prompt, ip_adapter_image, ip_adapter_scale],
|
| 153 |
+
# outputs = [result]
|
| 154 |
+
# )
|
| 155 |
|
| 156 |
run_button.click(
|
| 157 |
fn = infer,
|
| 158 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 159 |
outputs = [result]
|
| 160 |
)
|
| 161 |
|
kolors/__pycache__/__init__.cpython-38.pyc
DELETED
|
Binary file (135 Bytes)
|
|
|
kolors/models/__pycache__/__init__.cpython-38.pyc
DELETED
|
Binary file (142 Bytes)
|
|
|
kolors/models/__pycache__/configuration_chatglm.cpython-38.pyc
DELETED
|
Binary file (1.6 kB)
|
|
|
kolors/models/__pycache__/modeling_chatglm.cpython-38.pyc
DELETED
|
Binary file (33.5 kB)
|
|
|
kolors/models/__pycache__/tokenization_chatglm.cpython-38.pyc
DELETED
|
Binary file (11.5 kB)
|
|
|
kolors/models/__pycache__/unet_2d_condition.cpython-38.pyc
DELETED
|
Binary file (40.3 kB)
|
|
|
kolors/models/controlnet.py
ADDED
|
@@ -0,0 +1,887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
| 23 |
+
from diffusers.utils import BaseOutput, logging
|
| 24 |
+
from diffusers.models.attention_processor import (
|
| 25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 26 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 27 |
+
AttentionProcessor,
|
| 28 |
+
AttnAddedKVProcessor,
|
| 29 |
+
AttnProcessor,
|
| 30 |
+
)
|
| 31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
| 32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
from diffusers.unets.unet_2d_blocks import (
|
| 36 |
+
CrossAttnDownBlock2D,
|
| 37 |
+
DownBlock2D,
|
| 38 |
+
UNetMidBlock2D,
|
| 39 |
+
UNetMidBlock2DCrossAttn,
|
| 40 |
+
get_down_block,
|
| 41 |
+
)
|
| 42 |
+
from diffusers.unets.unet_2d_condition import UNet2DConditionModel
|
| 43 |
+
except:
|
| 44 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
| 45 |
+
CrossAttnDownBlock2D,
|
| 46 |
+
DownBlock2D,
|
| 47 |
+
UNetMidBlock2D,
|
| 48 |
+
UNetMidBlock2DCrossAttn,
|
| 49 |
+
get_down_block,
|
| 50 |
+
)
|
| 51 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@dataclass
|
| 59 |
+
class ControlNetOutput(BaseOutput):
|
| 60 |
+
"""
|
| 61 |
+
The output of [`ControlNetModel`].
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
| 65 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
| 66 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 67 |
+
used to condition the original UNet's downsampling activations.
|
| 68 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
| 69 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
| 70 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 71 |
+
Output can be used to condition the original UNet's middle block activation.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
| 75 |
+
mid_block_res_sample: torch.Tensor
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
| 79 |
+
"""
|
| 80 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
| 81 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
| 82 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
| 83 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
| 84 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
| 85 |
+
model) to encode image-space conditions ... into feature maps ..."
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
conditioning_embedding_channels: int,
|
| 91 |
+
conditioning_channels: int = 3,
|
| 92 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 93 |
+
):
|
| 94 |
+
super().__init__()
|
| 95 |
+
|
| 96 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 97 |
+
|
| 98 |
+
self.blocks = nn.ModuleList([])
|
| 99 |
+
|
| 100 |
+
for i in range(len(block_out_channels) - 1):
|
| 101 |
+
channel_in = block_out_channels[i]
|
| 102 |
+
channel_out = block_out_channels[i + 1]
|
| 103 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 104 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
| 105 |
+
|
| 106 |
+
self.conv_out = zero_module(
|
| 107 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
def forward(self, conditioning):
|
| 111 |
+
embedding = self.conv_in(conditioning)
|
| 112 |
+
embedding = F.silu(embedding)
|
| 113 |
+
|
| 114 |
+
for block in self.blocks:
|
| 115 |
+
embedding = block(embedding)
|
| 116 |
+
embedding = F.silu(embedding)
|
| 117 |
+
|
| 118 |
+
embedding = self.conv_out(embedding)
|
| 119 |
+
|
| 120 |
+
return embedding
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 124 |
+
"""
|
| 125 |
+
A ControlNet model.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
in_channels (`int`, defaults to 4):
|
| 129 |
+
The number of channels in the input sample.
|
| 130 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 131 |
+
Whether to flip the sin to cos in the time embedding.
|
| 132 |
+
freq_shift (`int`, defaults to 0):
|
| 133 |
+
The frequency shift to apply to the time embedding.
|
| 134 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 135 |
+
The tuple of downsample blocks to use.
|
| 136 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
| 137 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
| 138 |
+
The tuple of output channels for each block.
|
| 139 |
+
layers_per_block (`int`, defaults to 2):
|
| 140 |
+
The number of layers per block.
|
| 141 |
+
downsample_padding (`int`, defaults to 1):
|
| 142 |
+
The padding to use for the downsampling convolution.
|
| 143 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
| 144 |
+
The scale factor to use for the mid block.
|
| 145 |
+
act_fn (`str`, defaults to "silu"):
|
| 146 |
+
The activation function to use.
|
| 147 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 148 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
| 149 |
+
in post-processing.
|
| 150 |
+
norm_eps (`float`, defaults to 1e-5):
|
| 151 |
+
The epsilon to use for the normalization.
|
| 152 |
+
cross_attention_dim (`int`, defaults to 1280):
|
| 153 |
+
The dimension of the cross attention features.
|
| 154 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 155 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 156 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 157 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 158 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 159 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 160 |
+
dimension to `cross_attention_dim`.
|
| 161 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 162 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 163 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 164 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
| 165 |
+
The dimension of the attention heads.
|
| 166 |
+
use_linear_projection (`bool`, defaults to `False`):
|
| 167 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 168 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
| 169 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 170 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 171 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 172 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 173 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
| 174 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 175 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 176 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 177 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
| 178 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
| 179 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
| 180 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
| 181 |
+
`class_embed_type="projection"`.
|
| 182 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 183 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 184 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
| 185 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 186 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
| 187 |
+
TODO(Patrick) - unused parameter.
|
| 188 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
| 189 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
_supports_gradient_checkpointing = True
|
| 193 |
+
|
| 194 |
+
@register_to_config
|
| 195 |
+
def __init__(
|
| 196 |
+
self,
|
| 197 |
+
in_channels: int = 4,
|
| 198 |
+
conditioning_channels: int = 3,
|
| 199 |
+
flip_sin_to_cos: bool = True,
|
| 200 |
+
freq_shift: int = 0,
|
| 201 |
+
down_block_types: Tuple[str, ...] = (
|
| 202 |
+
"CrossAttnDownBlock2D",
|
| 203 |
+
"CrossAttnDownBlock2D",
|
| 204 |
+
"CrossAttnDownBlock2D",
|
| 205 |
+
"DownBlock2D",
|
| 206 |
+
),
|
| 207 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 208 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 209 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 210 |
+
layers_per_block: int = 2,
|
| 211 |
+
downsample_padding: int = 1,
|
| 212 |
+
mid_block_scale_factor: float = 1,
|
| 213 |
+
act_fn: str = "silu",
|
| 214 |
+
norm_num_groups: Optional[int] = 32,
|
| 215 |
+
norm_eps: float = 1e-5,
|
| 216 |
+
cross_attention_dim: int = 1280,
|
| 217 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 218 |
+
encoder_hid_dim: Optional[int] = None,
|
| 219 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 220 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
| 221 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
| 222 |
+
use_linear_projection: bool = False,
|
| 223 |
+
class_embed_type: Optional[str] = None,
|
| 224 |
+
addition_embed_type: Optional[str] = None,
|
| 225 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 226 |
+
num_class_embeds: Optional[int] = None,
|
| 227 |
+
upcast_attention: bool = False,
|
| 228 |
+
resnet_time_scale_shift: str = "default",
|
| 229 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 230 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 231 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 232 |
+
global_pool_conditions: bool = False,
|
| 233 |
+
addition_embed_type_num_heads: int = 64,
|
| 234 |
+
):
|
| 235 |
+
super().__init__()
|
| 236 |
+
|
| 237 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 238 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 239 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 240 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 241 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 242 |
+
# which is why we correct for the naming here.
|
| 243 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 244 |
+
|
| 245 |
+
# Check inputs
|
| 246 |
+
if len(block_out_channels) != len(down_block_types):
|
| 247 |
+
raise ValueError(
|
| 248 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 252 |
+
raise ValueError(
|
| 253 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 257 |
+
raise ValueError(
|
| 258 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
if isinstance(transformer_layers_per_block, int):
|
| 262 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 263 |
+
|
| 264 |
+
# input
|
| 265 |
+
conv_in_kernel = 3
|
| 266 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 267 |
+
self.conv_in = nn.Conv2d(
|
| 268 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# time
|
| 272 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 273 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 274 |
+
timestep_input_dim = block_out_channels[0]
|
| 275 |
+
self.time_embedding = TimestepEmbedding(
|
| 276 |
+
timestep_input_dim,
|
| 277 |
+
time_embed_dim,
|
| 278 |
+
act_fn=act_fn,
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 282 |
+
encoder_hid_dim_type = "text_proj"
|
| 283 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 284 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 285 |
+
|
| 286 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 287 |
+
raise ValueError(
|
| 288 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
if encoder_hid_dim_type == "text_proj":
|
| 292 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 293 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 294 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 295 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 296 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
| 297 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 298 |
+
text_embed_dim=encoder_hid_dim,
|
| 299 |
+
image_embed_dim=cross_attention_dim,
|
| 300 |
+
cross_attention_dim=cross_attention_dim,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
elif encoder_hid_dim_type is not None:
|
| 304 |
+
raise ValueError(
|
| 305 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 306 |
+
)
|
| 307 |
+
else:
|
| 308 |
+
self.encoder_hid_proj = None
|
| 309 |
+
|
| 310 |
+
# class embedding
|
| 311 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 312 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 313 |
+
elif class_embed_type == "timestep":
|
| 314 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 315 |
+
elif class_embed_type == "identity":
|
| 316 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 317 |
+
elif class_embed_type == "projection":
|
| 318 |
+
if projection_class_embeddings_input_dim is None:
|
| 319 |
+
raise ValueError(
|
| 320 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 321 |
+
)
|
| 322 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 323 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 324 |
+
# 2. it projects from an arbitrary input dimension.
|
| 325 |
+
#
|
| 326 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 327 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 328 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 329 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 330 |
+
else:
|
| 331 |
+
self.class_embedding = None
|
| 332 |
+
|
| 333 |
+
if addition_embed_type == "text":
|
| 334 |
+
if encoder_hid_dim is not None:
|
| 335 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 336 |
+
else:
|
| 337 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 338 |
+
|
| 339 |
+
self.add_embedding = TextTimeEmbedding(
|
| 340 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 341 |
+
)
|
| 342 |
+
elif addition_embed_type == "text_image":
|
| 343 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 344 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 345 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
| 346 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 347 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 348 |
+
)
|
| 349 |
+
elif addition_embed_type == "text_time":
|
| 350 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 351 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 352 |
+
|
| 353 |
+
elif addition_embed_type is not None:
|
| 354 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 355 |
+
|
| 356 |
+
# control net conditioning embedding
|
| 357 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 358 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 359 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 360 |
+
conditioning_channels=conditioning_channels,
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
self.down_blocks = nn.ModuleList([])
|
| 364 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
| 365 |
+
|
| 366 |
+
if isinstance(only_cross_attention, bool):
|
| 367 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 368 |
+
|
| 369 |
+
if isinstance(attention_head_dim, int):
|
| 370 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 371 |
+
|
| 372 |
+
if isinstance(num_attention_heads, int):
|
| 373 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 374 |
+
|
| 375 |
+
# down
|
| 376 |
+
output_channel = block_out_channels[0]
|
| 377 |
+
|
| 378 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 379 |
+
controlnet_block = zero_module(controlnet_block)
|
| 380 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 381 |
+
|
| 382 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 383 |
+
input_channel = output_channel
|
| 384 |
+
output_channel = block_out_channels[i]
|
| 385 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 386 |
+
|
| 387 |
+
down_block = get_down_block(
|
| 388 |
+
down_block_type,
|
| 389 |
+
num_layers=layers_per_block,
|
| 390 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 391 |
+
in_channels=input_channel,
|
| 392 |
+
out_channels=output_channel,
|
| 393 |
+
temb_channels=time_embed_dim,
|
| 394 |
+
add_downsample=not is_final_block,
|
| 395 |
+
resnet_eps=norm_eps,
|
| 396 |
+
resnet_act_fn=act_fn,
|
| 397 |
+
resnet_groups=norm_num_groups,
|
| 398 |
+
cross_attention_dim=cross_attention_dim,
|
| 399 |
+
num_attention_heads=num_attention_heads[i],
|
| 400 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 401 |
+
downsample_padding=downsample_padding,
|
| 402 |
+
use_linear_projection=use_linear_projection,
|
| 403 |
+
only_cross_attention=only_cross_attention[i],
|
| 404 |
+
upcast_attention=upcast_attention,
|
| 405 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 406 |
+
)
|
| 407 |
+
self.down_blocks.append(down_block)
|
| 408 |
+
|
| 409 |
+
for _ in range(layers_per_block):
|
| 410 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 411 |
+
controlnet_block = zero_module(controlnet_block)
|
| 412 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 413 |
+
|
| 414 |
+
if not is_final_block:
|
| 415 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 416 |
+
controlnet_block = zero_module(controlnet_block)
|
| 417 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 418 |
+
|
| 419 |
+
# mid
|
| 420 |
+
mid_block_channel = block_out_channels[-1]
|
| 421 |
+
|
| 422 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
| 423 |
+
controlnet_block = zero_module(controlnet_block)
|
| 424 |
+
self.controlnet_mid_block = controlnet_block
|
| 425 |
+
|
| 426 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 427 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 428 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 429 |
+
in_channels=mid_block_channel,
|
| 430 |
+
temb_channels=time_embed_dim,
|
| 431 |
+
resnet_eps=norm_eps,
|
| 432 |
+
resnet_act_fn=act_fn,
|
| 433 |
+
output_scale_factor=mid_block_scale_factor,
|
| 434 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 435 |
+
cross_attention_dim=cross_attention_dim,
|
| 436 |
+
num_attention_heads=num_attention_heads[-1],
|
| 437 |
+
resnet_groups=norm_num_groups,
|
| 438 |
+
use_linear_projection=use_linear_projection,
|
| 439 |
+
upcast_attention=upcast_attention,
|
| 440 |
+
)
|
| 441 |
+
elif mid_block_type == "UNetMidBlock2D":
|
| 442 |
+
self.mid_block = UNetMidBlock2D(
|
| 443 |
+
in_channels=block_out_channels[-1],
|
| 444 |
+
temb_channels=time_embed_dim,
|
| 445 |
+
num_layers=0,
|
| 446 |
+
resnet_eps=norm_eps,
|
| 447 |
+
resnet_act_fn=act_fn,
|
| 448 |
+
output_scale_factor=mid_block_scale_factor,
|
| 449 |
+
resnet_groups=norm_num_groups,
|
| 450 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 451 |
+
add_attention=False,
|
| 452 |
+
)
|
| 453 |
+
else:
|
| 454 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 455 |
+
|
| 456 |
+
@classmethod
|
| 457 |
+
def from_unet(
|
| 458 |
+
cls,
|
| 459 |
+
unet: UNet2DConditionModel,
|
| 460 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 461 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 462 |
+
load_weights_from_unet: bool = True,
|
| 463 |
+
conditioning_channels: int = 3,
|
| 464 |
+
):
|
| 465 |
+
r"""
|
| 466 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
| 467 |
+
|
| 468 |
+
Parameters:
|
| 469 |
+
unet (`UNet2DConditionModel`):
|
| 470 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
| 471 |
+
where applicable.
|
| 472 |
+
"""
|
| 473 |
+
transformer_layers_per_block = (
|
| 474 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
| 475 |
+
)
|
| 476 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
| 477 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
| 478 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
| 479 |
+
addition_time_embed_dim = (
|
| 480 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
controlnet = cls(
|
| 484 |
+
encoder_hid_dim=encoder_hid_dim,
|
| 485 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
| 486 |
+
addition_embed_type=addition_embed_type,
|
| 487 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
| 488 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 489 |
+
in_channels=unet.config.in_channels,
|
| 490 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
| 491 |
+
freq_shift=unet.config.freq_shift,
|
| 492 |
+
down_block_types=unet.config.down_block_types,
|
| 493 |
+
only_cross_attention=unet.config.only_cross_attention,
|
| 494 |
+
block_out_channels=unet.config.block_out_channels,
|
| 495 |
+
layers_per_block=unet.config.layers_per_block,
|
| 496 |
+
downsample_padding=unet.config.downsample_padding,
|
| 497 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
| 498 |
+
act_fn=unet.config.act_fn,
|
| 499 |
+
norm_num_groups=unet.config.norm_num_groups,
|
| 500 |
+
norm_eps=unet.config.norm_eps,
|
| 501 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 502 |
+
attention_head_dim=unet.config.attention_head_dim,
|
| 503 |
+
num_attention_heads=unet.config.num_attention_heads,
|
| 504 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 505 |
+
class_embed_type=unet.config.class_embed_type,
|
| 506 |
+
num_class_embeds=unet.config.num_class_embeds,
|
| 507 |
+
upcast_attention=unet.config.upcast_attention,
|
| 508 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
| 509 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
| 510 |
+
mid_block_type=unet.config.mid_block_type,
|
| 511 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
| 512 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 513 |
+
conditioning_channels=conditioning_channels,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
if load_weights_from_unet:
|
| 517 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
| 518 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
| 519 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
| 520 |
+
|
| 521 |
+
if controlnet.class_embedding:
|
| 522 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
| 523 |
+
|
| 524 |
+
if hasattr(controlnet, "add_embedding"):
|
| 525 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
| 526 |
+
|
| 527 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
| 528 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
| 529 |
+
|
| 530 |
+
return controlnet
|
| 531 |
+
|
| 532 |
+
@property
|
| 533 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 534 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 535 |
+
r"""
|
| 536 |
+
Returns:
|
| 537 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 538 |
+
indexed by its weight name.
|
| 539 |
+
"""
|
| 540 |
+
# set recursively
|
| 541 |
+
processors = {}
|
| 542 |
+
|
| 543 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 544 |
+
if hasattr(module, "get_processor"):
|
| 545 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 546 |
+
|
| 547 |
+
for sub_name, child in module.named_children():
|
| 548 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 549 |
+
|
| 550 |
+
return processors
|
| 551 |
+
|
| 552 |
+
for name, module in self.named_children():
|
| 553 |
+
fn_recursive_add_processors(name, module, processors)
|
| 554 |
+
|
| 555 |
+
return processors
|
| 556 |
+
|
| 557 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 558 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 559 |
+
r"""
|
| 560 |
+
Sets the attention processor to use to compute attention.
|
| 561 |
+
|
| 562 |
+
Parameters:
|
| 563 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 564 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 565 |
+
for **all** `Attention` layers.
|
| 566 |
+
|
| 567 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 568 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 569 |
+
|
| 570 |
+
"""
|
| 571 |
+
count = len(self.attn_processors.keys())
|
| 572 |
+
|
| 573 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 574 |
+
raise ValueError(
|
| 575 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 576 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 580 |
+
if hasattr(module, "set_processor"):
|
| 581 |
+
if not isinstance(processor, dict):
|
| 582 |
+
module.set_processor(processor)
|
| 583 |
+
else:
|
| 584 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 585 |
+
|
| 586 |
+
for sub_name, child in module.named_children():
|
| 587 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 588 |
+
|
| 589 |
+
for name, module in self.named_children():
|
| 590 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 591 |
+
|
| 592 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 593 |
+
def set_default_attn_processor(self):
|
| 594 |
+
"""
|
| 595 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 596 |
+
"""
|
| 597 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 598 |
+
processor = AttnAddedKVProcessor()
|
| 599 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 600 |
+
processor = AttnProcessor()
|
| 601 |
+
else:
|
| 602 |
+
raise ValueError(
|
| 603 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
self.set_attn_processor(processor)
|
| 607 |
+
|
| 608 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
| 609 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
| 610 |
+
r"""
|
| 611 |
+
Enable sliced attention computation.
|
| 612 |
+
|
| 613 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 614 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 615 |
+
|
| 616 |
+
Args:
|
| 617 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 618 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 619 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 620 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 621 |
+
must be a multiple of `slice_size`.
|
| 622 |
+
"""
|
| 623 |
+
sliceable_head_dims = []
|
| 624 |
+
|
| 625 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 626 |
+
if hasattr(module, "set_attention_slice"):
|
| 627 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 628 |
+
|
| 629 |
+
for child in module.children():
|
| 630 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 631 |
+
|
| 632 |
+
# retrieve number of attention layers
|
| 633 |
+
for module in self.children():
|
| 634 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 635 |
+
|
| 636 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 637 |
+
|
| 638 |
+
if slice_size == "auto":
|
| 639 |
+
# half the attention head size is usually a good trade-off between
|
| 640 |
+
# speed and memory
|
| 641 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 642 |
+
elif slice_size == "max":
|
| 643 |
+
# make smallest slice possible
|
| 644 |
+
slice_size = num_sliceable_layers * [1]
|
| 645 |
+
|
| 646 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 647 |
+
|
| 648 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 649 |
+
raise ValueError(
|
| 650 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 651 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
for i in range(len(slice_size)):
|
| 655 |
+
size = slice_size[i]
|
| 656 |
+
dim = sliceable_head_dims[i]
|
| 657 |
+
if size is not None and size > dim:
|
| 658 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 659 |
+
|
| 660 |
+
# Recursively walk through all the children.
|
| 661 |
+
# Any children which exposes the set_attention_slice method
|
| 662 |
+
# gets the message
|
| 663 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 664 |
+
if hasattr(module, "set_attention_slice"):
|
| 665 |
+
module.set_attention_slice(slice_size.pop())
|
| 666 |
+
|
| 667 |
+
for child in module.children():
|
| 668 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 669 |
+
|
| 670 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 671 |
+
for module in self.children():
|
| 672 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 673 |
+
|
| 674 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
| 675 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
| 676 |
+
module.gradient_checkpointing = value
|
| 677 |
+
|
| 678 |
+
def forward(
|
| 679 |
+
self,
|
| 680 |
+
sample: torch.Tensor,
|
| 681 |
+
timestep: Union[torch.Tensor, float, int],
|
| 682 |
+
encoder_hidden_states: torch.Tensor,
|
| 683 |
+
controlnet_cond: torch.Tensor,
|
| 684 |
+
conditioning_scale: float = 1.0,
|
| 685 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 686 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 687 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 688 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 689 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 690 |
+
guess_mode: bool = False,
|
| 691 |
+
return_dict: bool = True,
|
| 692 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
| 693 |
+
"""
|
| 694 |
+
The [`ControlNetModel`] forward method.
|
| 695 |
+
|
| 696 |
+
Args:
|
| 697 |
+
sample (`torch.Tensor`):
|
| 698 |
+
The noisy input tensor.
|
| 699 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 700 |
+
The number of timesteps to denoise an input.
|
| 701 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 702 |
+
The encoder hidden states.
|
| 703 |
+
controlnet_cond (`torch.Tensor`):
|
| 704 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 705 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 706 |
+
The scale factor for ControlNet outputs.
|
| 707 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 708 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 709 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 710 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 711 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 712 |
+
embeddings.
|
| 713 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 714 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 715 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 716 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 717 |
+
added_cond_kwargs (`dict`):
|
| 718 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 719 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 720 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 721 |
+
guess_mode (`bool`, defaults to `False`):
|
| 722 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 723 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 724 |
+
return_dict (`bool`, defaults to `True`):
|
| 725 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
| 726 |
+
|
| 727 |
+
Returns:
|
| 728 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 729 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
| 730 |
+
returned where the first element is the sample tensor.
|
| 731 |
+
"""
|
| 732 |
+
# check channel order
|
| 733 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
| 734 |
+
|
| 735 |
+
if channel_order == "rgb":
|
| 736 |
+
# in rgb order by default
|
| 737 |
+
...
|
| 738 |
+
elif channel_order == "bgr":
|
| 739 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
| 740 |
+
else:
|
| 741 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
| 742 |
+
|
| 743 |
+
# prepare attention_mask
|
| 744 |
+
if attention_mask is not None:
|
| 745 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 746 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 747 |
+
|
| 748 |
+
#Todo
|
| 749 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
| 750 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 751 |
+
|
| 752 |
+
# 1. time
|
| 753 |
+
timesteps = timestep
|
| 754 |
+
if not torch.is_tensor(timesteps):
|
| 755 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 756 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 757 |
+
is_mps = sample.device.type == "mps"
|
| 758 |
+
if isinstance(timestep, float):
|
| 759 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 760 |
+
else:
|
| 761 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 762 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 763 |
+
elif len(timesteps.shape) == 0:
|
| 764 |
+
timesteps = timesteps[None].to(sample.device)
|
| 765 |
+
|
| 766 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 767 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 768 |
+
|
| 769 |
+
t_emb = self.time_proj(timesteps)
|
| 770 |
+
|
| 771 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 772 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 773 |
+
# there might be better ways to encapsulate this.
|
| 774 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 775 |
+
|
| 776 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 777 |
+
aug_emb = None
|
| 778 |
+
|
| 779 |
+
if self.class_embedding is not None:
|
| 780 |
+
if class_labels is None:
|
| 781 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 782 |
+
|
| 783 |
+
if self.config.class_embed_type == "timestep":
|
| 784 |
+
class_labels = self.time_proj(class_labels)
|
| 785 |
+
|
| 786 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 787 |
+
emb = emb + class_emb
|
| 788 |
+
|
| 789 |
+
if self.config.addition_embed_type is not None:
|
| 790 |
+
if self.config.addition_embed_type == "text":
|
| 791 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 792 |
+
|
| 793 |
+
elif self.config.addition_embed_type == "text_time":
|
| 794 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 795 |
+
raise ValueError(
|
| 796 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 797 |
+
)
|
| 798 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 799 |
+
if "time_ids" not in added_cond_kwargs:
|
| 800 |
+
raise ValueError(
|
| 801 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 802 |
+
)
|
| 803 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 804 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 805 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 806 |
+
|
| 807 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 808 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 809 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 810 |
+
|
| 811 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 812 |
+
|
| 813 |
+
# 2. pre-process
|
| 814 |
+
sample = self.conv_in(sample)
|
| 815 |
+
|
| 816 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
| 817 |
+
sample = sample + controlnet_cond
|
| 818 |
+
|
| 819 |
+
# 3. down
|
| 820 |
+
down_block_res_samples = (sample,)
|
| 821 |
+
for downsample_block in self.down_blocks:
|
| 822 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 823 |
+
sample, res_samples = downsample_block(
|
| 824 |
+
hidden_states=sample,
|
| 825 |
+
temb=emb,
|
| 826 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 827 |
+
attention_mask=attention_mask,
|
| 828 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 829 |
+
)
|
| 830 |
+
else:
|
| 831 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 832 |
+
|
| 833 |
+
down_block_res_samples += res_samples
|
| 834 |
+
|
| 835 |
+
# 4. mid
|
| 836 |
+
if self.mid_block is not None:
|
| 837 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
| 838 |
+
sample = self.mid_block(
|
| 839 |
+
sample,
|
| 840 |
+
emb,
|
| 841 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 842 |
+
attention_mask=attention_mask,
|
| 843 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 844 |
+
)
|
| 845 |
+
else:
|
| 846 |
+
sample = self.mid_block(sample, emb)
|
| 847 |
+
|
| 848 |
+
# 5. Control net blocks
|
| 849 |
+
|
| 850 |
+
controlnet_down_block_res_samples = ()
|
| 851 |
+
|
| 852 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 853 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
| 854 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
| 855 |
+
|
| 856 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 857 |
+
|
| 858 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
| 859 |
+
|
| 860 |
+
# 6. scaling
|
| 861 |
+
if guess_mode and not self.config.global_pool_conditions:
|
| 862 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
| 863 |
+
scales = scales * conditioning_scale
|
| 864 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
| 865 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
| 866 |
+
else:
|
| 867 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
| 868 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
| 869 |
+
|
| 870 |
+
if self.config.global_pool_conditions:
|
| 871 |
+
down_block_res_samples = [
|
| 872 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
| 873 |
+
]
|
| 874 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
| 875 |
+
|
| 876 |
+
if not return_dict:
|
| 877 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 878 |
+
|
| 879 |
+
return ControlNetOutput(
|
| 880 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
def zero_module(module):
|
| 885 |
+
for p in module.parameters():
|
| 886 |
+
nn.init.zeros_(p)
|
| 887 |
+
return module
|
kolors/pipelines/__pycache__/__init__.cpython-38.pyc
DELETED
|
Binary file (145 Bytes)
|
|
|
kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256.cpython-38.pyc
DELETED
|
Binary file (28.2 kB)
|
|
|
kolors/pipelines/__pycache__/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.cpython-38.pyc
DELETED
|
Binary file (30.3 kB)
|
|
|
kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py
ADDED
|
@@ -0,0 +1,1365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import inspect
|
| 17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
import PIL.Image
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn.functional as F
|
| 23 |
+
from transformers import (
|
| 24 |
+
CLIPImageProcessor,
|
| 25 |
+
CLIPTextModel,
|
| 26 |
+
CLIPTextModelWithProjection,
|
| 27 |
+
CLIPTokenizer,
|
| 28 |
+
CLIPVisionModelWithProjection,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
| 32 |
+
|
| 33 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 34 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 35 |
+
from diffusers.loaders import (
|
| 36 |
+
FromSingleFileMixin,
|
| 37 |
+
IPAdapterMixin,
|
| 38 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 39 |
+
TextualInversionLoaderMixin,
|
| 40 |
+
)
|
| 41 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 42 |
+
from diffusers.models.attention_processor import (
|
| 43 |
+
AttnProcessor2_0,
|
| 44 |
+
XFormersAttnProcessor,
|
| 45 |
+
)
|
| 46 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 47 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 48 |
+
from diffusers.utils import (
|
| 49 |
+
USE_PEFT_BACKEND,
|
| 50 |
+
deprecate,
|
| 51 |
+
logging,
|
| 52 |
+
replace_example_docstring,
|
| 53 |
+
scale_lora_layers,
|
| 54 |
+
unscale_lora_layers,
|
| 55 |
+
)
|
| 56 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
| 57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 59 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
| 60 |
+
|
| 61 |
+
from ..models.controlnet import ControlNetModel
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 69 |
+
def retrieve_latents(
|
| 70 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 71 |
+
):
|
| 72 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 73 |
+
return encoder_output.latent_dist.sample(generator)
|
| 74 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 75 |
+
return encoder_output.latent_dist.mode()
|
| 76 |
+
elif hasattr(encoder_output, "latents"):
|
| 77 |
+
return encoder_output.latents
|
| 78 |
+
else:
|
| 79 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class StableDiffusionXLControlNetImg2ImgPipeline(
|
| 83 |
+
DiffusionPipeline,
|
| 84 |
+
StableDiffusionMixin,
|
| 85 |
+
TextualInversionLoaderMixin,
|
| 86 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 87 |
+
FromSingleFileMixin,
|
| 88 |
+
IPAdapterMixin,
|
| 89 |
+
):
|
| 90 |
+
r"""
|
| 91 |
+
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
| 92 |
+
|
| 93 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 94 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 95 |
+
|
| 96 |
+
The pipeline also inherits the following loading methods:
|
| 97 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 98 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 99 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 100 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
vae ([`AutoencoderKL`]):
|
| 104 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 105 |
+
text_encoder ([`CLIPTextModel`]):
|
| 106 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
| 107 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 108 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 109 |
+
tokenizer (`CLIPTokenizer`):
|
| 110 |
+
Tokenizer of class
|
| 111 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 112 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 113 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
| 114 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
| 115 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
| 116 |
+
conditioning.
|
| 117 |
+
scheduler ([`SchedulerMixin`]):
|
| 118 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 119 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 120 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
| 121 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
| 122 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
| 123 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
| 124 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
| 125 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
| 126 |
+
add_watermarker (`bool`, *optional*):
|
| 127 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
| 128 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
| 129 |
+
watermarker will be used.
|
| 130 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
| 131 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
| 135 |
+
_optional_components = [
|
| 136 |
+
"tokenizer",
|
| 137 |
+
"text_encoder",
|
| 138 |
+
"feature_extractor",
|
| 139 |
+
"image_encoder",
|
| 140 |
+
]
|
| 141 |
+
_callback_tensor_inputs = [
|
| 142 |
+
"latents",
|
| 143 |
+
"prompt_embeds",
|
| 144 |
+
"negative_prompt_embeds",
|
| 145 |
+
"add_text_embeds",
|
| 146 |
+
"add_time_ids",
|
| 147 |
+
"negative_pooled_prompt_embeds",
|
| 148 |
+
"add_neg_time_ids",
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
def __init__(
|
| 152 |
+
self,
|
| 153 |
+
vae: AutoencoderKL,
|
| 154 |
+
text_encoder: CLIPTextModel,
|
| 155 |
+
tokenizer: CLIPTokenizer,
|
| 156 |
+
unet: UNet2DConditionModel,
|
| 157 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
| 158 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 159 |
+
requires_aesthetics_score: bool = False,
|
| 160 |
+
force_zeros_for_empty_prompt: bool = True,
|
| 161 |
+
feature_extractor: CLIPImageProcessor = None,
|
| 162 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 163 |
+
):
|
| 164 |
+
super().__init__()
|
| 165 |
+
|
| 166 |
+
if isinstance(controlnet, (list, tuple)):
|
| 167 |
+
controlnet = MultiControlNetModel(controlnet)
|
| 168 |
+
|
| 169 |
+
self.register_modules(
|
| 170 |
+
vae=vae,
|
| 171 |
+
text_encoder=text_encoder,
|
| 172 |
+
tokenizer=tokenizer,
|
| 173 |
+
unet=unet,
|
| 174 |
+
controlnet=controlnet,
|
| 175 |
+
scheduler=scheduler,
|
| 176 |
+
feature_extractor=feature_extractor,
|
| 177 |
+
image_encoder=image_encoder,
|
| 178 |
+
)
|
| 179 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 180 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
| 181 |
+
self.control_image_processor = VaeImageProcessor(
|
| 182 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
self.watermark = None
|
| 186 |
+
|
| 187 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
| 188 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def encode_prompt(
|
| 192 |
+
self,
|
| 193 |
+
prompt,
|
| 194 |
+
device: Optional[torch.device] = None,
|
| 195 |
+
num_images_per_prompt: int = 1,
|
| 196 |
+
do_classifier_free_guidance: bool = True,
|
| 197 |
+
negative_prompt=None,
|
| 198 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 199 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 200 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 201 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 202 |
+
lora_scale: Optional[float] = None,
|
| 203 |
+
):
|
| 204 |
+
r"""
|
| 205 |
+
Encodes the prompt into text encoder hidden states.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 209 |
+
prompt to be encoded
|
| 210 |
+
device: (`torch.device`):
|
| 211 |
+
torch device
|
| 212 |
+
num_images_per_prompt (`int`):
|
| 213 |
+
number of images that should be generated per prompt
|
| 214 |
+
do_classifier_free_guidance (`bool`):
|
| 215 |
+
whether to use classifier free guidance or not
|
| 216 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 217 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 218 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 219 |
+
less than `1`).
|
| 220 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 221 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 222 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 223 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 224 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 225 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 226 |
+
argument.
|
| 227 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 228 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 229 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 230 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 231 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 232 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 233 |
+
input argument.
|
| 234 |
+
lora_scale (`float`, *optional*):
|
| 235 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 236 |
+
"""
|
| 237 |
+
# from IPython import embed; embed(); exit()
|
| 238 |
+
device = device or self._execution_device
|
| 239 |
+
|
| 240 |
+
# set lora scale so that monkey patched LoRA
|
| 241 |
+
# function of text encoder can correctly access it
|
| 242 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
| 243 |
+
self._lora_scale = lora_scale
|
| 244 |
+
|
| 245 |
+
if prompt is not None and isinstance(prompt, str):
|
| 246 |
+
batch_size = 1
|
| 247 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 248 |
+
batch_size = len(prompt)
|
| 249 |
+
else:
|
| 250 |
+
batch_size = prompt_embeds.shape[0]
|
| 251 |
+
|
| 252 |
+
# Define tokenizers and text encoders
|
| 253 |
+
tokenizers = [self.tokenizer]
|
| 254 |
+
text_encoders = [self.text_encoder]
|
| 255 |
+
|
| 256 |
+
if prompt_embeds is None:
|
| 257 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 258 |
+
prompt_embeds_list = []
|
| 259 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 260 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 261 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
| 262 |
+
|
| 263 |
+
text_inputs = tokenizer(
|
| 264 |
+
prompt,
|
| 265 |
+
padding="max_length",
|
| 266 |
+
max_length=256,
|
| 267 |
+
truncation=True,
|
| 268 |
+
return_tensors="pt",
|
| 269 |
+
).to('cuda')
|
| 270 |
+
output = text_encoder(
|
| 271 |
+
input_ids=text_inputs['input_ids'] ,
|
| 272 |
+
attention_mask=text_inputs['attention_mask'],
|
| 273 |
+
position_ids=text_inputs['position_ids'],
|
| 274 |
+
output_hidden_states=True)
|
| 275 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
| 276 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
| 277 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 278 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 279 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 280 |
+
|
| 281 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 282 |
+
|
| 283 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 284 |
+
prompt_embeds = prompt_embeds_list[0]
|
| 285 |
+
|
| 286 |
+
# get unconditional embeddings for classifier free guidance
|
| 287 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
| 288 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
| 289 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
| 290 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
| 291 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 292 |
+
# negative_prompt = negative_prompt or ""
|
| 293 |
+
uncond_tokens: List[str]
|
| 294 |
+
if negative_prompt is None:
|
| 295 |
+
uncond_tokens = [""] * batch_size
|
| 296 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
| 297 |
+
raise TypeError(
|
| 298 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 299 |
+
f" {type(prompt)}."
|
| 300 |
+
)
|
| 301 |
+
elif isinstance(negative_prompt, str):
|
| 302 |
+
uncond_tokens = [negative_prompt]
|
| 303 |
+
elif batch_size != len(negative_prompt):
|
| 304 |
+
raise ValueError(
|
| 305 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 306 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 307 |
+
" the batch size of `prompt`."
|
| 308 |
+
)
|
| 309 |
+
else:
|
| 310 |
+
uncond_tokens = negative_prompt
|
| 311 |
+
|
| 312 |
+
negative_prompt_embeds_list = []
|
| 313 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 314 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 315 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 316 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
| 317 |
+
|
| 318 |
+
max_length = prompt_embeds.shape[1]
|
| 319 |
+
uncond_input = tokenizer(
|
| 320 |
+
uncond_tokens,
|
| 321 |
+
padding="max_length",
|
| 322 |
+
max_length=max_length,
|
| 323 |
+
truncation=True,
|
| 324 |
+
return_tensors="pt",
|
| 325 |
+
).to('cuda')
|
| 326 |
+
output = text_encoder(
|
| 327 |
+
input_ids=uncond_input['input_ids'] ,
|
| 328 |
+
attention_mask=uncond_input['attention_mask'],
|
| 329 |
+
position_ids=uncond_input['position_ids'],
|
| 330 |
+
output_hidden_states=True)
|
| 331 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
| 332 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
| 333 |
+
|
| 334 |
+
if do_classifier_free_guidance:
|
| 335 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 336 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 337 |
+
|
| 338 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
| 339 |
+
|
| 340 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 341 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 342 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 346 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 347 |
+
# to avoid doing two forward passes
|
| 348 |
+
|
| 349 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
| 350 |
+
|
| 351 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
| 352 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
| 353 |
+
|
| 354 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
| 355 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
| 356 |
+
bs_embed * num_images_per_prompt, -1
|
| 357 |
+
)
|
| 358 |
+
if do_classifier_free_guidance:
|
| 359 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
| 360 |
+
bs_embed * num_images_per_prompt, -1
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
| 367 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
| 368 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 369 |
+
|
| 370 |
+
if not isinstance(image, torch.Tensor):
|
| 371 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 372 |
+
|
| 373 |
+
image = image.to(device=device, dtype=dtype)
|
| 374 |
+
if output_hidden_states:
|
| 375 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 376 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
| 377 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
| 378 |
+
torch.zeros_like(image), output_hidden_states=True
|
| 379 |
+
).hidden_states[-2]
|
| 380 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
| 381 |
+
num_images_per_prompt, dim=0
|
| 382 |
+
)
|
| 383 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
| 384 |
+
else:
|
| 385 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 386 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 387 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
| 388 |
+
|
| 389 |
+
return image_embeds, uncond_image_embeds
|
| 390 |
+
|
| 391 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 392 |
+
def prepare_ip_adapter_image_embeds(
|
| 393 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
| 394 |
+
):
|
| 395 |
+
image_embeds = []
|
| 396 |
+
if do_classifier_free_guidance:
|
| 397 |
+
negative_image_embeds = []
|
| 398 |
+
if ip_adapter_image_embeds is None:
|
| 399 |
+
if not isinstance(ip_adapter_image, list):
|
| 400 |
+
ip_adapter_image = [ip_adapter_image]
|
| 401 |
+
|
| 402 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
| 403 |
+
raise ValueError(
|
| 404 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
| 408 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
| 409 |
+
):
|
| 410 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
| 411 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
| 412 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
image_embeds.append(single_image_embeds[None, :])
|
| 416 |
+
if do_classifier_free_guidance:
|
| 417 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
| 418 |
+
else:
|
| 419 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 420 |
+
if do_classifier_free_guidance:
|
| 421 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
| 422 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
| 423 |
+
image_embeds.append(single_image_embeds)
|
| 424 |
+
|
| 425 |
+
ip_adapter_image_embeds = []
|
| 426 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
| 427 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 428 |
+
if do_classifier_free_guidance:
|
| 429 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
| 430 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
| 431 |
+
|
| 432 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
| 433 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
| 434 |
+
|
| 435 |
+
return ip_adapter_image_embeds
|
| 436 |
+
|
| 437 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 438 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 439 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 440 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 441 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 442 |
+
# and should be between [0, 1]
|
| 443 |
+
|
| 444 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 445 |
+
extra_step_kwargs = {}
|
| 446 |
+
if accepts_eta:
|
| 447 |
+
extra_step_kwargs["eta"] = eta
|
| 448 |
+
|
| 449 |
+
# check if the scheduler accepts generator
|
| 450 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 451 |
+
if accepts_generator:
|
| 452 |
+
extra_step_kwargs["generator"] = generator
|
| 453 |
+
return extra_step_kwargs
|
| 454 |
+
|
| 455 |
+
def check_inputs(
|
| 456 |
+
self,
|
| 457 |
+
prompt,
|
| 458 |
+
image,
|
| 459 |
+
strength,
|
| 460 |
+
num_inference_steps,
|
| 461 |
+
callback_steps,
|
| 462 |
+
negative_prompt=None,
|
| 463 |
+
prompt_embeds=None,
|
| 464 |
+
negative_prompt_embeds=None,
|
| 465 |
+
pooled_prompt_embeds=None,
|
| 466 |
+
negative_pooled_prompt_embeds=None,
|
| 467 |
+
ip_adapter_image=None,
|
| 468 |
+
ip_adapter_image_embeds=None,
|
| 469 |
+
controlnet_conditioning_scale=1.0,
|
| 470 |
+
control_guidance_start=0.0,
|
| 471 |
+
control_guidance_end=1.0,
|
| 472 |
+
callback_on_step_end_tensor_inputs=None,
|
| 473 |
+
):
|
| 474 |
+
if strength < 0 or strength > 1:
|
| 475 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 476 |
+
if num_inference_steps is None:
|
| 477 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
| 478 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
| 479 |
+
raise ValueError(
|
| 480 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
| 481 |
+
f" {type(num_inference_steps)}."
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
| 485 |
+
raise ValueError(
|
| 486 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 487 |
+
f" {type(callback_steps)}."
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 491 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 492 |
+
):
|
| 493 |
+
raise ValueError(
|
| 494 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
if prompt is not None and prompt_embeds is not None:
|
| 498 |
+
raise ValueError(
|
| 499 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 500 |
+
" only forward one of the two."
|
| 501 |
+
)
|
| 502 |
+
elif prompt is None and prompt_embeds is None:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 505 |
+
)
|
| 506 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 507 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 508 |
+
|
| 509 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 510 |
+
raise ValueError(
|
| 511 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 512 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 516 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 517 |
+
raise ValueError(
|
| 518 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 519 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 520 |
+
f" {negative_prompt_embeds.shape}."
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 524 |
+
raise ValueError(
|
| 525 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 529 |
+
raise ValueError(
|
| 530 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
| 534 |
+
# conditionings.
|
| 535 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
| 536 |
+
if isinstance(prompt, list):
|
| 537 |
+
logger.warning(
|
| 538 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
| 539 |
+
" prompts. The conditionings will be fixed across the prompts."
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
# Check `image`
|
| 543 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
| 544 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
| 545 |
+
)
|
| 546 |
+
if (
|
| 547 |
+
isinstance(self.controlnet, ControlNetModel)
|
| 548 |
+
or is_compiled
|
| 549 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
| 550 |
+
):
|
| 551 |
+
self.check_image(image, prompt, prompt_embeds)
|
| 552 |
+
elif (
|
| 553 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
| 554 |
+
or is_compiled
|
| 555 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
| 556 |
+
):
|
| 557 |
+
if not isinstance(image, list):
|
| 558 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
| 559 |
+
|
| 560 |
+
# When `image` is a nested list:
|
| 561 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
| 562 |
+
elif any(isinstance(i, list) for i in image):
|
| 563 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
| 564 |
+
elif len(image) != len(self.controlnet.nets):
|
| 565 |
+
raise ValueError(
|
| 566 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
for image_ in image:
|
| 570 |
+
self.check_image(image_, prompt, prompt_embeds)
|
| 571 |
+
else:
|
| 572 |
+
assert False
|
| 573 |
+
|
| 574 |
+
# Check `controlnet_conditioning_scale`
|
| 575 |
+
if (
|
| 576 |
+
isinstance(self.controlnet, ControlNetModel)
|
| 577 |
+
or is_compiled
|
| 578 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
| 579 |
+
):
|
| 580 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
| 581 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
| 582 |
+
elif (
|
| 583 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
| 584 |
+
or is_compiled
|
| 585 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
| 586 |
+
):
|
| 587 |
+
if isinstance(controlnet_conditioning_scale, list):
|
| 588 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
| 589 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
| 590 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
| 591 |
+
self.controlnet.nets
|
| 592 |
+
):
|
| 593 |
+
raise ValueError(
|
| 594 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
| 595 |
+
" the same length as the number of controlnets"
|
| 596 |
+
)
|
| 597 |
+
else:
|
| 598 |
+
assert False
|
| 599 |
+
|
| 600 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
| 601 |
+
control_guidance_start = [control_guidance_start]
|
| 602 |
+
|
| 603 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
| 604 |
+
control_guidance_end = [control_guidance_end]
|
| 605 |
+
|
| 606 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
| 607 |
+
raise ValueError(
|
| 608 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
| 612 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
| 613 |
+
raise ValueError(
|
| 614 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
| 618 |
+
if start >= end:
|
| 619 |
+
raise ValueError(
|
| 620 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
| 621 |
+
)
|
| 622 |
+
if start < 0.0:
|
| 623 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
| 624 |
+
if end > 1.0:
|
| 625 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
| 626 |
+
|
| 627 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 628 |
+
raise ValueError(
|
| 629 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
if ip_adapter_image_embeds is not None:
|
| 633 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 634 |
+
raise ValueError(
|
| 635 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 636 |
+
)
|
| 637 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 638 |
+
raise ValueError(
|
| 639 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
| 643 |
+
def check_image(self, image, prompt, prompt_embeds):
|
| 644 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
| 645 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
| 646 |
+
image_is_np = isinstance(image, np.ndarray)
|
| 647 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
| 648 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
| 649 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
| 650 |
+
|
| 651 |
+
if (
|
| 652 |
+
not image_is_pil
|
| 653 |
+
and not image_is_tensor
|
| 654 |
+
and not image_is_np
|
| 655 |
+
and not image_is_pil_list
|
| 656 |
+
and not image_is_tensor_list
|
| 657 |
+
and not image_is_np_list
|
| 658 |
+
):
|
| 659 |
+
raise TypeError(
|
| 660 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
if image_is_pil:
|
| 664 |
+
image_batch_size = 1
|
| 665 |
+
else:
|
| 666 |
+
image_batch_size = len(image)
|
| 667 |
+
|
| 668 |
+
if prompt is not None and isinstance(prompt, str):
|
| 669 |
+
prompt_batch_size = 1
|
| 670 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 671 |
+
prompt_batch_size = len(prompt)
|
| 672 |
+
elif prompt_embeds is not None:
|
| 673 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
| 674 |
+
|
| 675 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
| 676 |
+
raise ValueError(
|
| 677 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
| 681 |
+
def prepare_control_image(
|
| 682 |
+
self,
|
| 683 |
+
image,
|
| 684 |
+
width,
|
| 685 |
+
height,
|
| 686 |
+
batch_size,
|
| 687 |
+
num_images_per_prompt,
|
| 688 |
+
device,
|
| 689 |
+
dtype,
|
| 690 |
+
do_classifier_free_guidance=False,
|
| 691 |
+
guess_mode=False,
|
| 692 |
+
):
|
| 693 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
| 694 |
+
image_batch_size = image.shape[0]
|
| 695 |
+
|
| 696 |
+
if image_batch_size == 1:
|
| 697 |
+
repeat_by = batch_size
|
| 698 |
+
else:
|
| 699 |
+
# image batch size is the same as prompt batch size
|
| 700 |
+
repeat_by = num_images_per_prompt
|
| 701 |
+
|
| 702 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
| 703 |
+
|
| 704 |
+
image = image.to(device=device, dtype=dtype)
|
| 705 |
+
|
| 706 |
+
if do_classifier_free_guidance and not guess_mode:
|
| 707 |
+
image = torch.cat([image] * 2)
|
| 708 |
+
|
| 709 |
+
return image
|
| 710 |
+
|
| 711 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
| 712 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
| 713 |
+
# get the original timestep using init_timestep
|
| 714 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 715 |
+
|
| 716 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 717 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 718 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
| 719 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
| 720 |
+
|
| 721 |
+
return timesteps, num_inference_steps - t_start
|
| 722 |
+
|
| 723 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
| 724 |
+
def prepare_latents(
|
| 725 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
| 726 |
+
):
|
| 727 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
| 728 |
+
raise ValueError(
|
| 729 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
| 733 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 734 |
+
torch.cuda.empty_cache()
|
| 735 |
+
|
| 736 |
+
image = image.to(device=device, dtype=dtype)
|
| 737 |
+
|
| 738 |
+
batch_size = batch_size * num_images_per_prompt
|
| 739 |
+
|
| 740 |
+
if image.shape[1] == 4:
|
| 741 |
+
init_latents = image
|
| 742 |
+
|
| 743 |
+
else:
|
| 744 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 745 |
+
if self.vae.config.force_upcast:
|
| 746 |
+
image = image.float()
|
| 747 |
+
self.vae.to(dtype=torch.float32)
|
| 748 |
+
|
| 749 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 750 |
+
raise ValueError(
|
| 751 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 752 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
elif isinstance(generator, list):
|
| 756 |
+
init_latents = [
|
| 757 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
| 758 |
+
for i in range(batch_size)
|
| 759 |
+
]
|
| 760 |
+
init_latents = torch.cat(init_latents, dim=0)
|
| 761 |
+
else:
|
| 762 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 763 |
+
|
| 764 |
+
if self.vae.config.force_upcast:
|
| 765 |
+
self.vae.to(dtype)
|
| 766 |
+
|
| 767 |
+
init_latents = init_latents.to(dtype)
|
| 768 |
+
|
| 769 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
| 770 |
+
|
| 771 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
| 772 |
+
# expand init_latents for batch_size
|
| 773 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
| 774 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
| 775 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
| 776 |
+
raise ValueError(
|
| 777 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
| 778 |
+
)
|
| 779 |
+
else:
|
| 780 |
+
init_latents = torch.cat([init_latents], dim=0)
|
| 781 |
+
|
| 782 |
+
if add_noise:
|
| 783 |
+
shape = init_latents.shape
|
| 784 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 785 |
+
# get latents
|
| 786 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 787 |
+
|
| 788 |
+
latents = init_latents
|
| 789 |
+
|
| 790 |
+
return latents
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 794 |
+
def prepare_latents_t2i(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 795 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 796 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 797 |
+
raise ValueError(
|
| 798 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 799 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
if latents is None:
|
| 803 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 804 |
+
else:
|
| 805 |
+
latents = latents.to(device)
|
| 806 |
+
|
| 807 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 808 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 809 |
+
return latents
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
| 814 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
| 815 |
+
|
| 816 |
+
passed_add_embed_dim = (
|
| 817 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
| 818 |
+
)
|
| 819 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 820 |
+
|
| 821 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 822 |
+
raise ValueError(
|
| 823 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 827 |
+
return add_time_ids
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 831 |
+
def upcast_vae(self):
|
| 832 |
+
dtype = self.vae.dtype
|
| 833 |
+
self.vae.to(dtype=torch.float32)
|
| 834 |
+
use_torch_2_0_or_xformers = isinstance(
|
| 835 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
| 836 |
+
(
|
| 837 |
+
AttnProcessor2_0,
|
| 838 |
+
XFormersAttnProcessor,
|
| 839 |
+
),
|
| 840 |
+
)
|
| 841 |
+
# if xformers or torch_2_0 is used attention block does not need
|
| 842 |
+
# to be in float32 which can save lots of memory
|
| 843 |
+
if use_torch_2_0_or_xformers:
|
| 844 |
+
self.vae.post_quant_conv.to(dtype)
|
| 845 |
+
self.vae.decoder.conv_in.to(dtype)
|
| 846 |
+
self.vae.decoder.mid_block.to(dtype)
|
| 847 |
+
|
| 848 |
+
@property
|
| 849 |
+
def guidance_scale(self):
|
| 850 |
+
return self._guidance_scale
|
| 851 |
+
|
| 852 |
+
@property
|
| 853 |
+
def clip_skip(self):
|
| 854 |
+
return self._clip_skip
|
| 855 |
+
|
| 856 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 857 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 858 |
+
# corresponds to doing no classifier free guidance.
|
| 859 |
+
@property
|
| 860 |
+
def do_classifier_free_guidance(self):
|
| 861 |
+
return self._guidance_scale > 1
|
| 862 |
+
|
| 863 |
+
@property
|
| 864 |
+
def cross_attention_kwargs(self):
|
| 865 |
+
return self._cross_attention_kwargs
|
| 866 |
+
|
| 867 |
+
@property
|
| 868 |
+
def num_timesteps(self):
|
| 869 |
+
return self._num_timesteps
|
| 870 |
+
|
| 871 |
+
@torch.no_grad()
|
| 872 |
+
def __call__(
|
| 873 |
+
self,
|
| 874 |
+
prompt: Union[str, List[str]] = None,
|
| 875 |
+
image: PipelineImageInput = None,
|
| 876 |
+
control_image: PipelineImageInput = None,
|
| 877 |
+
height: Optional[int] = None,
|
| 878 |
+
width: Optional[int] = None,
|
| 879 |
+
strength: float = 0.8,
|
| 880 |
+
num_inference_steps: int = 50,
|
| 881 |
+
guidance_scale: float = 5.0,
|
| 882 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 883 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 884 |
+
eta: float = 0.0,
|
| 885 |
+
guess_mode: bool = False,
|
| 886 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 887 |
+
latents: Optional[torch.Tensor] = None,
|
| 888 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 889 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 890 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 891 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 892 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 893 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 894 |
+
output_type: Optional[str] = "pil",
|
| 895 |
+
return_dict: bool = True,
|
| 896 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 897 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
| 898 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
| 899 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
| 900 |
+
original_size: Tuple[int, int] = None,
|
| 901 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 902 |
+
target_size: Tuple[int, int] = None,
|
| 903 |
+
clip_skip: Optional[int] = None,
|
| 904 |
+
callback_on_step_end: Optional[
|
| 905 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 906 |
+
] = None,
|
| 907 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 908 |
+
**kwargs,
|
| 909 |
+
):
|
| 910 |
+
r"""
|
| 911 |
+
Function invoked when calling the pipeline for generation.
|
| 912 |
+
|
| 913 |
+
Args:
|
| 914 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 915 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 916 |
+
instead.
|
| 917 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 918 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 919 |
+
The initial image will be used as the starting point for the image generation process. Can also accept
|
| 920 |
+
image latents as `image`, if passing latents directly, it will not be encoded again.
|
| 921 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 922 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 923 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
| 924 |
+
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
| 925 |
+
be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
| 926 |
+
and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
|
| 927 |
+
init, images must be passed as a list such that each element of the list can be correctly batched for
|
| 928 |
+
input to a single controlnet.
|
| 929 |
+
height (`int`, *optional*, defaults to the size of control_image):
|
| 930 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 931 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 932 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 933 |
+
width (`int`, *optional*, defaults to the size of control_image):
|
| 934 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 935 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 936 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 937 |
+
strength (`float`, *optional*, defaults to 0.8):
|
| 938 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
| 939 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
| 940 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
| 941 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
| 942 |
+
essentially ignores `image`.
|
| 943 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 944 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 945 |
+
expense of slower inference.
|
| 946 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 947 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 948 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 949 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 950 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 951 |
+
usually at the expense of lower image quality.
|
| 952 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 953 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 954 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 955 |
+
less than `1`).
|
| 956 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 957 |
+
The number of images to generate per prompt.
|
| 958 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 959 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 960 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 961 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 962 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 963 |
+
to make generation deterministic.
|
| 964 |
+
latents (`torch.Tensor`, *optional*):
|
| 965 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 966 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 967 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 968 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 969 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 970 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 971 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 972 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 973 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 974 |
+
argument.
|
| 975 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 976 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 977 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 978 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 979 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 980 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 981 |
+
input argument.
|
| 982 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 983 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 984 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 985 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 986 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 987 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 988 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 989 |
+
The output format of the generate image. Choose between
|
| 990 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 991 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 992 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 993 |
+
plain tuple.
|
| 994 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 995 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 996 |
+
`self.processor` in
|
| 997 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 998 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 999 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 1000 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
| 1001 |
+
corresponding scale as a list.
|
| 1002 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
| 1003 |
+
The percentage of total steps at which the controlnet starts applying.
|
| 1004 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 1005 |
+
The percentage of total steps at which the controlnet stops applying.
|
| 1006 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1007 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 1008 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
| 1009 |
+
explained in section 2.2 of
|
| 1010 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1011 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1012 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 1013 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 1014 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1015 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1016 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1017 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 1018 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
| 1019 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1020 |
+
clip_skip (`int`, *optional*):
|
| 1021 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1022 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1023 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 1024 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 1025 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 1026 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1027 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 1028 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1029 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1030 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1031 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1032 |
+
|
| 1033 |
+
Examples:
|
| 1034 |
+
|
| 1035 |
+
Returns:
|
| 1036 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1037 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
| 1038 |
+
containing the output images.
|
| 1039 |
+
"""
|
| 1040 |
+
|
| 1041 |
+
callback = kwargs.pop("callback", None)
|
| 1042 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 1043 |
+
|
| 1044 |
+
if callback is not None:
|
| 1045 |
+
deprecate(
|
| 1046 |
+
"callback",
|
| 1047 |
+
"1.0.0",
|
| 1048 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 1049 |
+
)
|
| 1050 |
+
if callback_steps is not None:
|
| 1051 |
+
deprecate(
|
| 1052 |
+
"callback_steps",
|
| 1053 |
+
"1.0.0",
|
| 1054 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 1058 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 1059 |
+
|
| 1060 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
| 1061 |
+
|
| 1062 |
+
# align format for control guidance
|
| 1063 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
| 1064 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
| 1065 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
| 1066 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
| 1067 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
| 1068 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
| 1069 |
+
control_guidance_start, control_guidance_end = (
|
| 1070 |
+
mult * [control_guidance_start],
|
| 1071 |
+
mult * [control_guidance_end],
|
| 1072 |
+
)
|
| 1073 |
+
|
| 1074 |
+
# from IPython import embed; embed()
|
| 1075 |
+
# 1. Check inputs. Raise error if not correct
|
| 1076 |
+
self.check_inputs(
|
| 1077 |
+
prompt,
|
| 1078 |
+
control_image,
|
| 1079 |
+
strength,
|
| 1080 |
+
num_inference_steps,
|
| 1081 |
+
callback_steps,
|
| 1082 |
+
negative_prompt,
|
| 1083 |
+
prompt_embeds,
|
| 1084 |
+
negative_prompt_embeds,
|
| 1085 |
+
pooled_prompt_embeds,
|
| 1086 |
+
negative_pooled_prompt_embeds,
|
| 1087 |
+
ip_adapter_image,
|
| 1088 |
+
ip_adapter_image_embeds,
|
| 1089 |
+
controlnet_conditioning_scale,
|
| 1090 |
+
control_guidance_start,
|
| 1091 |
+
control_guidance_end,
|
| 1092 |
+
callback_on_step_end_tensor_inputs,
|
| 1093 |
+
)
|
| 1094 |
+
|
| 1095 |
+
self._guidance_scale = guidance_scale
|
| 1096 |
+
self._clip_skip = clip_skip
|
| 1097 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1098 |
+
|
| 1099 |
+
# 2. Define call parameters
|
| 1100 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1101 |
+
batch_size = 1
|
| 1102 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1103 |
+
batch_size = len(prompt)
|
| 1104 |
+
else:
|
| 1105 |
+
batch_size = prompt_embeds.shape[0]
|
| 1106 |
+
|
| 1107 |
+
device = self._execution_device
|
| 1108 |
+
|
| 1109 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
| 1110 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
| 1111 |
+
|
| 1112 |
+
# 3.1. Encode input prompt
|
| 1113 |
+
text_encoder_lora_scale = (
|
| 1114 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 1115 |
+
)
|
| 1116 |
+
(
|
| 1117 |
+
prompt_embeds,
|
| 1118 |
+
negative_prompt_embeds,
|
| 1119 |
+
pooled_prompt_embeds,
|
| 1120 |
+
negative_pooled_prompt_embeds,
|
| 1121 |
+
) = self.encode_prompt(
|
| 1122 |
+
prompt,
|
| 1123 |
+
device,
|
| 1124 |
+
num_images_per_prompt,
|
| 1125 |
+
self.do_classifier_free_guidance,
|
| 1126 |
+
negative_prompt,
|
| 1127 |
+
prompt_embeds=prompt_embeds,
|
| 1128 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1129 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1130 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1131 |
+
lora_scale=text_encoder_lora_scale,
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
# 3.2 Encode ip_adapter_image
|
| 1135 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1136 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1137 |
+
ip_adapter_image,
|
| 1138 |
+
ip_adapter_image_embeds,
|
| 1139 |
+
device,
|
| 1140 |
+
batch_size * num_images_per_prompt,
|
| 1141 |
+
self.do_classifier_free_guidance,
|
| 1142 |
+
)
|
| 1143 |
+
|
| 1144 |
+
# 4. Prepare image and controlnet_conditioning_image
|
| 1145 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
| 1146 |
+
|
| 1147 |
+
if isinstance(controlnet, ControlNetModel):
|
| 1148 |
+
control_image = self.prepare_control_image(
|
| 1149 |
+
image=control_image,
|
| 1150 |
+
width=width,
|
| 1151 |
+
height=height,
|
| 1152 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 1153 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1154 |
+
device=device,
|
| 1155 |
+
dtype=controlnet.dtype,
|
| 1156 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1157 |
+
guess_mode=guess_mode,
|
| 1158 |
+
)
|
| 1159 |
+
height, width = control_image.shape[-2:]
|
| 1160 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
| 1161 |
+
control_images = []
|
| 1162 |
+
|
| 1163 |
+
for control_image_ in control_image:
|
| 1164 |
+
control_image_ = self.prepare_control_image(
|
| 1165 |
+
image=control_image_,
|
| 1166 |
+
width=width,
|
| 1167 |
+
height=height,
|
| 1168 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 1169 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1170 |
+
device=device,
|
| 1171 |
+
dtype=controlnet.dtype,
|
| 1172 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1173 |
+
guess_mode=guess_mode,
|
| 1174 |
+
)
|
| 1175 |
+
|
| 1176 |
+
control_images.append(control_image_)
|
| 1177 |
+
|
| 1178 |
+
control_image = control_images
|
| 1179 |
+
height, width = control_image[0].shape[-2:]
|
| 1180 |
+
else:
|
| 1181 |
+
assert False
|
| 1182 |
+
|
| 1183 |
+
# 5. Prepare timesteps
|
| 1184 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 1185 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
| 1186 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 1187 |
+
self._num_timesteps = len(timesteps)
|
| 1188 |
+
|
| 1189 |
+
# 6. Prepare latent variables
|
| 1190 |
+
|
| 1191 |
+
num_channels_latents = self.unet.config.in_channels
|
| 1192 |
+
if latents is None:
|
| 1193 |
+
if strength >= 1.0:
|
| 1194 |
+
latents = self.prepare_latents_t2i(
|
| 1195 |
+
batch_size * num_images_per_prompt,
|
| 1196 |
+
num_channels_latents,
|
| 1197 |
+
height,
|
| 1198 |
+
width,
|
| 1199 |
+
prompt_embeds.dtype,
|
| 1200 |
+
device,
|
| 1201 |
+
generator,
|
| 1202 |
+
latents,
|
| 1203 |
+
)
|
| 1204 |
+
else:
|
| 1205 |
+
latents = self.prepare_latents(
|
| 1206 |
+
image,
|
| 1207 |
+
latent_timestep,
|
| 1208 |
+
batch_size,
|
| 1209 |
+
num_images_per_prompt,
|
| 1210 |
+
prompt_embeds.dtype,
|
| 1211 |
+
device,
|
| 1212 |
+
generator,
|
| 1213 |
+
True,
|
| 1214 |
+
)
|
| 1215 |
+
|
| 1216 |
+
|
| 1217 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1218 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1219 |
+
|
| 1220 |
+
# 7.1 Create tensor stating which controlnets to keep
|
| 1221 |
+
controlnet_keep = []
|
| 1222 |
+
for i in range(len(timesteps)):
|
| 1223 |
+
keeps = [
|
| 1224 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
| 1225 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
| 1226 |
+
]
|
| 1227 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
| 1228 |
+
|
| 1229 |
+
# 7.2 Prepare added time ids & embeddings
|
| 1230 |
+
if isinstance(control_image, list):
|
| 1231 |
+
original_size = original_size or control_image[0].shape[-2:]
|
| 1232 |
+
else:
|
| 1233 |
+
original_size = original_size or control_image.shape[-2:]
|
| 1234 |
+
target_size = target_size or (height, width)
|
| 1235 |
+
|
| 1236 |
+
# 7. Prepare added time ids & embeddings
|
| 1237 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1238 |
+
add_time_ids = self._get_add_time_ids(
|
| 1239 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
| 1240 |
+
)
|
| 1241 |
+
|
| 1242 |
+
if self.do_classifier_free_guidance:
|
| 1243 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1244 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 1245 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
| 1246 |
+
|
| 1247 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 1248 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 1249 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
| 1250 |
+
|
| 1251 |
+
# 8. Denoising loop
|
| 1252 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1253 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1254 |
+
for i, t in enumerate(timesteps):
|
| 1255 |
+
# expand the latents if we are doing classifier free guidance
|
| 1256 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1257 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1258 |
+
|
| 1259 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 1260 |
+
|
| 1261 |
+
# controlnet(s) inference
|
| 1262 |
+
if guess_mode and self.do_classifier_free_guidance:
|
| 1263 |
+
# Infer ControlNet only for the conditional batch.
|
| 1264 |
+
control_model_input = latents
|
| 1265 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
| 1266 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
| 1267 |
+
controlnet_added_cond_kwargs = {
|
| 1268 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
| 1269 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
| 1270 |
+
}
|
| 1271 |
+
else:
|
| 1272 |
+
control_model_input = latent_model_input
|
| 1273 |
+
controlnet_prompt_embeds = prompt_embeds
|
| 1274 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
| 1275 |
+
|
| 1276 |
+
if isinstance(controlnet_keep[i], list):
|
| 1277 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
| 1278 |
+
else:
|
| 1279 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
| 1280 |
+
if isinstance(controlnet_cond_scale, list):
|
| 1281 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
| 1282 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
| 1283 |
+
|
| 1284 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 1285 |
+
control_model_input,
|
| 1286 |
+
t,
|
| 1287 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
| 1288 |
+
controlnet_cond=control_image,
|
| 1289 |
+
conditioning_scale=cond_scale,
|
| 1290 |
+
guess_mode=guess_mode,
|
| 1291 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
| 1292 |
+
return_dict=False,
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
if guess_mode and self.do_classifier_free_guidance:
|
| 1296 |
+
# Infered ControlNet only for the conditional batch.
|
| 1297 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
| 1298 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
| 1299 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
| 1300 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
| 1301 |
+
|
| 1302 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1303 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1304 |
+
|
| 1305 |
+
# predict the noise residual
|
| 1306 |
+
noise_pred = self.unet(
|
| 1307 |
+
latent_model_input,
|
| 1308 |
+
t,
|
| 1309 |
+
encoder_hidden_states=prompt_embeds,
|
| 1310 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1311 |
+
down_block_additional_residuals=down_block_res_samples,
|
| 1312 |
+
mid_block_additional_residual=mid_block_res_sample,
|
| 1313 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1314 |
+
return_dict=False,
|
| 1315 |
+
)[0]
|
| 1316 |
+
|
| 1317 |
+
# perform guidance
|
| 1318 |
+
if self.do_classifier_free_guidance:
|
| 1319 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1320 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1321 |
+
|
| 1322 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1323 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1324 |
+
|
| 1325 |
+
# call the callback, if provided
|
| 1326 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1327 |
+
progress_bar.update()
|
| 1328 |
+
if callback is not None and i % callback_steps == 0:
|
| 1329 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1330 |
+
callback(step_idx, t, latents)
|
| 1331 |
+
|
| 1332 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
| 1333 |
+
# manually for max memory savings
|
| 1334 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1335 |
+
self.unet.to("cpu")
|
| 1336 |
+
self.controlnet.to("cpu")
|
| 1337 |
+
torch.cuda.empty_cache()
|
| 1338 |
+
|
| 1339 |
+
if not output_type == "latent":
|
| 1340 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1341 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1342 |
+
|
| 1343 |
+
if needs_upcasting:
|
| 1344 |
+
self.upcast_vae()
|
| 1345 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1346 |
+
|
| 1347 |
+
latents = latents / self.vae.config.scaling_factor
|
| 1348 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1349 |
+
|
| 1350 |
+
# cast back to fp16 if needed
|
| 1351 |
+
if needs_upcasting:
|
| 1352 |
+
self.vae.to(dtype=torch.float16)
|
| 1353 |
+
else:
|
| 1354 |
+
image = latents
|
| 1355 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
| 1356 |
+
|
| 1357 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1358 |
+
|
| 1359 |
+
# Offload all models
|
| 1360 |
+
self.maybe_free_model_hooks()
|
| 1361 |
+
|
| 1362 |
+
if not return_dict:
|
| 1363 |
+
return (image,)
|
| 1364 |
+
|
| 1365 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py
ADDED
|
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import PIL.Image
|
| 20 |
+
import torch
|
| 21 |
+
from transformers import (
|
| 22 |
+
CLIPImageProcessor,
|
| 23 |
+
CLIPTextModel,
|
| 24 |
+
CLIPTextModelWithProjection,
|
| 25 |
+
CLIPTokenizer,
|
| 26 |
+
CLIPVisionModelWithProjection,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 30 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 31 |
+
from diffusers.loaders import (
|
| 32 |
+
FromSingleFileMixin,
|
| 33 |
+
IPAdapterMixin,
|
| 34 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 35 |
+
TextualInversionLoaderMixin,
|
| 36 |
+
)
|
| 37 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 38 |
+
from diffusers.models.attention_processor import (
|
| 39 |
+
AttnProcessor2_0,
|
| 40 |
+
LoRAAttnProcessor2_0,
|
| 41 |
+
LoRAXFormersAttnProcessor,
|
| 42 |
+
XFormersAttnProcessor,
|
| 43 |
+
)
|
| 44 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 45 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 46 |
+
from diffusers.utils import (
|
| 47 |
+
USE_PEFT_BACKEND,
|
| 48 |
+
deprecate,
|
| 49 |
+
is_invisible_watermark_available,
|
| 50 |
+
is_torch_xla_available,
|
| 51 |
+
logging,
|
| 52 |
+
replace_example_docstring,
|
| 53 |
+
scale_lora_layers,
|
| 54 |
+
unscale_lora_layers,
|
| 55 |
+
)
|
| 56 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
if is_invisible_watermark_available():
|
| 62 |
+
from .watermark import StableDiffusionXLWatermarker
|
| 63 |
+
|
| 64 |
+
if is_torch_xla_available():
|
| 65 |
+
import torch_xla.core.xla_model as xm
|
| 66 |
+
|
| 67 |
+
XLA_AVAILABLE = True
|
| 68 |
+
else:
|
| 69 |
+
XLA_AVAILABLE = False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
EXAMPLE_DOC_STRING = """
|
| 76 |
+
Examples:
|
| 77 |
+
```py
|
| 78 |
+
>>> import torch
|
| 79 |
+
>>> from diffusers import StableDiffusionXLInpaintPipeline
|
| 80 |
+
>>> from diffusers.utils import load_image
|
| 81 |
+
|
| 82 |
+
>>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
| 83 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
| 84 |
+
... torch_dtype=torch.float16,
|
| 85 |
+
... variant="fp16",
|
| 86 |
+
... use_safetensors=True,
|
| 87 |
+
... )
|
| 88 |
+
>>> pipe.to("cuda")
|
| 89 |
+
|
| 90 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
| 91 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
| 92 |
+
|
| 93 |
+
>>> init_image = load_image(img_url).convert("RGB")
|
| 94 |
+
>>> mask_image = load_image(mask_url).convert("RGB")
|
| 95 |
+
|
| 96 |
+
>>> prompt = "A majestic tiger sitting on a bench"
|
| 97 |
+
>>> image = pipe(
|
| 98 |
+
... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
|
| 99 |
+
... ).images[0]
|
| 100 |
+
```
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
| 105 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 106 |
+
"""
|
| 107 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 108 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 109 |
+
"""
|
| 110 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
| 111 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 112 |
+
# rescale the results from guidance (fixes overexposure)
|
| 113 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 114 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 115 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 116 |
+
return noise_cfg
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def mask_pil_to_torch(mask, height, width):
|
| 120 |
+
# preprocess mask
|
| 121 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
| 122 |
+
mask = [mask]
|
| 123 |
+
|
| 124 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
| 125 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
| 126 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
| 127 |
+
mask = mask.astype(np.float32) / 255.0
|
| 128 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 129 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
| 130 |
+
|
| 131 |
+
mask = torch.from_numpy(mask)
|
| 132 |
+
return mask
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
| 136 |
+
"""
|
| 137 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
| 138 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
| 139 |
+
``image`` and ``1`` for the ``mask``.
|
| 140 |
+
|
| 141 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
| 142 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
| 146 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
| 147 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
| 148 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
| 149 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
| 150 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
Raises:
|
| 154 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
| 155 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
| 156 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
| 157 |
+
(ot the other way around).
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
| 161 |
+
dimensions: ``batch x channels x height x width``.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
| 165 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
| 166 |
+
deprecate(
|
| 167 |
+
"prepare_mask_and_masked_image",
|
| 168 |
+
"0.30.0",
|
| 169 |
+
deprecation_message,
|
| 170 |
+
)
|
| 171 |
+
if image is None:
|
| 172 |
+
raise ValueError("`image` input cannot be undefined.")
|
| 173 |
+
|
| 174 |
+
if mask is None:
|
| 175 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
| 176 |
+
|
| 177 |
+
if isinstance(image, torch.Tensor):
|
| 178 |
+
if not isinstance(mask, torch.Tensor):
|
| 179 |
+
mask = mask_pil_to_torch(mask, height, width)
|
| 180 |
+
|
| 181 |
+
if image.ndim == 3:
|
| 182 |
+
image = image.unsqueeze(0)
|
| 183 |
+
|
| 184 |
+
# Batch and add channel dim for single mask
|
| 185 |
+
if mask.ndim == 2:
|
| 186 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
| 187 |
+
|
| 188 |
+
# Batch single mask or add channel dim
|
| 189 |
+
if mask.ndim == 3:
|
| 190 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
| 191 |
+
if mask.shape[0] == 1:
|
| 192 |
+
mask = mask.unsqueeze(0)
|
| 193 |
+
|
| 194 |
+
# Batched masks no channel dim
|
| 195 |
+
else:
|
| 196 |
+
mask = mask.unsqueeze(1)
|
| 197 |
+
|
| 198 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
| 199 |
+
# assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
| 200 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
| 201 |
+
|
| 202 |
+
# Check image is in [-1, 1]
|
| 203 |
+
# if image.min() < -1 or image.max() > 1:
|
| 204 |
+
# raise ValueError("Image should be in [-1, 1] range")
|
| 205 |
+
|
| 206 |
+
# Check mask is in [0, 1]
|
| 207 |
+
if mask.min() < 0 or mask.max() > 1:
|
| 208 |
+
raise ValueError("Mask should be in [0, 1] range")
|
| 209 |
+
|
| 210 |
+
# Binarize mask
|
| 211 |
+
mask[mask < 0.5] = 0
|
| 212 |
+
mask[mask >= 0.5] = 1
|
| 213 |
+
|
| 214 |
+
# Image as float32
|
| 215 |
+
image = image.to(dtype=torch.float32)
|
| 216 |
+
elif isinstance(mask, torch.Tensor):
|
| 217 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
| 218 |
+
else:
|
| 219 |
+
# preprocess image
|
| 220 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
| 221 |
+
image = [image]
|
| 222 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
| 223 |
+
# resize all images w.r.t passed height an width
|
| 224 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
| 225 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
| 226 |
+
image = np.concatenate(image, axis=0)
|
| 227 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
| 228 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
| 229 |
+
|
| 230 |
+
image = image.transpose(0, 3, 1, 2)
|
| 231 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 232 |
+
|
| 233 |
+
mask = mask_pil_to_torch(mask, height, width)
|
| 234 |
+
mask[mask < 0.5] = 0
|
| 235 |
+
mask[mask >= 0.5] = 1
|
| 236 |
+
|
| 237 |
+
if image.shape[1] == 4:
|
| 238 |
+
# images are in latent space and thus can't
|
| 239 |
+
# be masked set masked_image to None
|
| 240 |
+
# we assume that the checkpoint is not an inpainting
|
| 241 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
| 242 |
+
masked_image = None
|
| 243 |
+
else:
|
| 244 |
+
masked_image = image * (mask < 0.5)
|
| 245 |
+
|
| 246 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
| 247 |
+
if return_image:
|
| 248 |
+
return mask, masked_image, image
|
| 249 |
+
|
| 250 |
+
return mask, masked_image
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 254 |
+
def retrieve_latents(
|
| 255 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 256 |
+
):
|
| 257 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 258 |
+
return encoder_output.latent_dist.sample(generator)
|
| 259 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 260 |
+
return encoder_output.latent_dist.mode()
|
| 261 |
+
elif hasattr(encoder_output, "latents"):
|
| 262 |
+
return encoder_output.latents
|
| 263 |
+
else:
|
| 264 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 268 |
+
def retrieve_timesteps(
|
| 269 |
+
scheduler,
|
| 270 |
+
num_inference_steps: Optional[int] = None,
|
| 271 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 272 |
+
timesteps: Optional[List[int]] = None,
|
| 273 |
+
sigmas: Optional[List[float]] = None,
|
| 274 |
+
**kwargs,
|
| 275 |
+
):
|
| 276 |
+
"""
|
| 277 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 278 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 279 |
+
|
| 280 |
+
Args:
|
| 281 |
+
scheduler (`SchedulerMixin`):
|
| 282 |
+
The scheduler to get timesteps from.
|
| 283 |
+
num_inference_steps (`int`):
|
| 284 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 285 |
+
must be `None`.
|
| 286 |
+
device (`str` or `torch.device`, *optional*):
|
| 287 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 288 |
+
timesteps (`List[int]`, *optional*):
|
| 289 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 290 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 291 |
+
sigmas (`List[float]`, *optional*):
|
| 292 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 293 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 294 |
+
|
| 295 |
+
Returns:
|
| 296 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 297 |
+
second element is the number of inference steps.
|
| 298 |
+
"""
|
| 299 |
+
if timesteps is not None and sigmas is not None:
|
| 300 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 301 |
+
if timesteps is not None:
|
| 302 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 303 |
+
if not accepts_timesteps:
|
| 304 |
+
raise ValueError(
|
| 305 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 306 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 307 |
+
)
|
| 308 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 309 |
+
timesteps = scheduler.timesteps
|
| 310 |
+
num_inference_steps = len(timesteps)
|
| 311 |
+
elif sigmas is not None:
|
| 312 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 313 |
+
if not accept_sigmas:
|
| 314 |
+
raise ValueError(
|
| 315 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 316 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 317 |
+
)
|
| 318 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 319 |
+
timesteps = scheduler.timesteps
|
| 320 |
+
num_inference_steps = len(timesteps)
|
| 321 |
+
else:
|
| 322 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 323 |
+
timesteps = scheduler.timesteps
|
| 324 |
+
return timesteps, num_inference_steps
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class StableDiffusionXLInpaintPipeline(
|
| 328 |
+
DiffusionPipeline,
|
| 329 |
+
StableDiffusionMixin,
|
| 330 |
+
TextualInversionLoaderMixin,
|
| 331 |
+
StableDiffusionXLLoraLoaderMixin,
|
| 332 |
+
FromSingleFileMixin,
|
| 333 |
+
IPAdapterMixin,
|
| 334 |
+
):
|
| 335 |
+
r"""
|
| 336 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
| 337 |
+
|
| 338 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 339 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 340 |
+
|
| 341 |
+
The pipeline also inherits the following loading methods:
|
| 342 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
| 343 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
| 344 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
| 345 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
| 346 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
| 347 |
+
|
| 348 |
+
Args:
|
| 349 |
+
vae ([`AutoencoderKL`]):
|
| 350 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 351 |
+
text_encoder ([`CLIPTextModel`]):
|
| 352 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
| 353 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 354 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 355 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
| 356 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
| 357 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 358 |
+
specifically the
|
| 359 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
| 360 |
+
variant.
|
| 361 |
+
tokenizer (`CLIPTokenizer`):
|
| 362 |
+
Tokenizer of class
|
| 363 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 364 |
+
tokenizer_2 (`CLIPTokenizer`):
|
| 365 |
+
Second Tokenizer of class
|
| 366 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 367 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 368 |
+
scheduler ([`SchedulerMixin`]):
|
| 369 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 370 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 371 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
| 372 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
| 373 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
| 374 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
| 375 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
| 376 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
| 377 |
+
add_watermarker (`bool`, *optional*):
|
| 378 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
| 379 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
| 380 |
+
watermarker will be used.
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
| 384 |
+
|
| 385 |
+
_optional_components = [
|
| 386 |
+
"tokenizer",
|
| 387 |
+
"tokenizer_2",
|
| 388 |
+
"text_encoder",
|
| 389 |
+
"text_encoder_2",
|
| 390 |
+
"image_encoder",
|
| 391 |
+
"feature_extractor",
|
| 392 |
+
]
|
| 393 |
+
_callback_tensor_inputs = [
|
| 394 |
+
"latents",
|
| 395 |
+
"prompt_embeds",
|
| 396 |
+
"negative_prompt_embeds",
|
| 397 |
+
"add_text_embeds",
|
| 398 |
+
"add_time_ids",
|
| 399 |
+
"negative_pooled_prompt_embeds",
|
| 400 |
+
"add_neg_time_ids",
|
| 401 |
+
"mask",
|
| 402 |
+
"masked_image_latents",
|
| 403 |
+
]
|
| 404 |
+
|
| 405 |
+
def __init__(
|
| 406 |
+
self,
|
| 407 |
+
vae: AutoencoderKL,
|
| 408 |
+
text_encoder: CLIPTextModel,
|
| 409 |
+
tokenizer: CLIPTokenizer,
|
| 410 |
+
unet: UNet2DConditionModel,
|
| 411 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 412 |
+
tokenizer_2: CLIPTokenizer = None,
|
| 413 |
+
text_encoder_2: CLIPTextModelWithProjection = None,
|
| 414 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 415 |
+
feature_extractor: CLIPImageProcessor = None,
|
| 416 |
+
requires_aesthetics_score: bool = False,
|
| 417 |
+
force_zeros_for_empty_prompt: bool = True,
|
| 418 |
+
add_watermarker: Optional[bool] = None,
|
| 419 |
+
):
|
| 420 |
+
super().__init__()
|
| 421 |
+
|
| 422 |
+
self.register_modules(
|
| 423 |
+
vae=vae,
|
| 424 |
+
text_encoder=text_encoder,
|
| 425 |
+
text_encoder_2=text_encoder_2,
|
| 426 |
+
tokenizer=tokenizer,
|
| 427 |
+
tokenizer_2=tokenizer_2,
|
| 428 |
+
unet=unet,
|
| 429 |
+
image_encoder=image_encoder,
|
| 430 |
+
feature_extractor=feature_extractor,
|
| 431 |
+
scheduler=scheduler,
|
| 432 |
+
)
|
| 433 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
| 434 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
| 435 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 436 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 437 |
+
self.mask_processor = VaeImageProcessor(
|
| 438 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
| 442 |
+
|
| 443 |
+
if add_watermarker:
|
| 444 |
+
self.watermark = StableDiffusionXLWatermarker()
|
| 445 |
+
else:
|
| 446 |
+
self.watermark = None
|
| 447 |
+
|
| 448 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
| 449 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
| 450 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 451 |
+
|
| 452 |
+
if not isinstance(image, torch.Tensor):
|
| 453 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 454 |
+
|
| 455 |
+
image = image.to(device=device, dtype=dtype)
|
| 456 |
+
if output_hidden_states:
|
| 457 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 458 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
| 459 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
| 460 |
+
torch.zeros_like(image), output_hidden_states=True
|
| 461 |
+
).hidden_states[-2]
|
| 462 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
| 463 |
+
num_images_per_prompt, dim=0
|
| 464 |
+
)
|
| 465 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
| 466 |
+
else:
|
| 467 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 468 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 469 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
| 470 |
+
|
| 471 |
+
return image_embeds, uncond_image_embeds
|
| 472 |
+
|
| 473 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 474 |
+
def prepare_ip_adapter_image_embeds(
|
| 475 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
| 476 |
+
):
|
| 477 |
+
if ip_adapter_image_embeds is None:
|
| 478 |
+
if not isinstance(ip_adapter_image, list):
|
| 479 |
+
ip_adapter_image = [ip_adapter_image]
|
| 480 |
+
|
| 481 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
| 482 |
+
raise ValueError(
|
| 483 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
image_embeds = []
|
| 487 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
| 488 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
| 489 |
+
):
|
| 490 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
| 491 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
| 492 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
| 493 |
+
)
|
| 494 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 495 |
+
single_negative_image_embeds = torch.stack(
|
| 496 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
if do_classifier_free_guidance:
|
| 500 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
| 501 |
+
single_image_embeds = single_image_embeds.to(device)
|
| 502 |
+
|
| 503 |
+
image_embeds.append(single_image_embeds)
|
| 504 |
+
else:
|
| 505 |
+
repeat_dims = [1]
|
| 506 |
+
image_embeds = []
|
| 507 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 508 |
+
if do_classifier_free_guidance:
|
| 509 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
| 510 |
+
single_image_embeds = single_image_embeds.repeat(
|
| 511 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
| 512 |
+
)
|
| 513 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
| 514 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
| 515 |
+
)
|
| 516 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
| 517 |
+
else:
|
| 518 |
+
single_image_embeds = single_image_embeds.repeat(
|
| 519 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
| 520 |
+
)
|
| 521 |
+
image_embeds.append(single_image_embeds)
|
| 522 |
+
|
| 523 |
+
return image_embeds
|
| 524 |
+
|
| 525 |
+
def encode_prompt(
|
| 526 |
+
self,
|
| 527 |
+
prompt,
|
| 528 |
+
device: Optional[torch.device] = None,
|
| 529 |
+
num_images_per_prompt: int = 1,
|
| 530 |
+
do_classifier_free_guidance: bool = True,
|
| 531 |
+
negative_prompt=None,
|
| 532 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 533 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 534 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 535 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 536 |
+
lora_scale: Optional[float] = None,
|
| 537 |
+
):
|
| 538 |
+
r"""
|
| 539 |
+
Encodes the prompt into text encoder hidden states.
|
| 540 |
+
|
| 541 |
+
Args:
|
| 542 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 543 |
+
prompt to be encoded
|
| 544 |
+
device: (`torch.device`):
|
| 545 |
+
torch device
|
| 546 |
+
num_images_per_prompt (`int`):
|
| 547 |
+
number of images that should be generated per prompt
|
| 548 |
+
do_classifier_free_guidance (`bool`):
|
| 549 |
+
whether to use classifier free guidance or not
|
| 550 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 551 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 552 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 553 |
+
less than `1`).
|
| 554 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 555 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 556 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 557 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 558 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 559 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 560 |
+
argument.
|
| 561 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 562 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 563 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 564 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 565 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 566 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 567 |
+
input argument.
|
| 568 |
+
lora_scale (`float`, *optional*):
|
| 569 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 570 |
+
"""
|
| 571 |
+
# from IPython import embed; embed(); exit()
|
| 572 |
+
device = device or self._execution_device
|
| 573 |
+
|
| 574 |
+
# set lora scale so that monkey patched LoRA
|
| 575 |
+
# function of text encoder can correctly access it
|
| 576 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
| 577 |
+
self._lora_scale = lora_scale
|
| 578 |
+
|
| 579 |
+
if prompt is not None and isinstance(prompt, str):
|
| 580 |
+
batch_size = 1
|
| 581 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 582 |
+
batch_size = len(prompt)
|
| 583 |
+
else:
|
| 584 |
+
batch_size = prompt_embeds.shape[0]
|
| 585 |
+
|
| 586 |
+
# Define tokenizers and text encoders
|
| 587 |
+
tokenizers = [self.tokenizer]
|
| 588 |
+
text_encoders = [self.text_encoder]
|
| 589 |
+
|
| 590 |
+
if prompt_embeds is None:
|
| 591 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 592 |
+
prompt_embeds_list = []
|
| 593 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 594 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 595 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
| 596 |
+
|
| 597 |
+
text_inputs = tokenizer(
|
| 598 |
+
prompt,
|
| 599 |
+
padding="max_length",
|
| 600 |
+
max_length=256,
|
| 601 |
+
truncation=True,
|
| 602 |
+
return_tensors="pt",
|
| 603 |
+
).to('cuda')
|
| 604 |
+
output = text_encoder(
|
| 605 |
+
input_ids=text_inputs['input_ids'] ,
|
| 606 |
+
attention_mask=text_inputs['attention_mask'],
|
| 607 |
+
position_ids=text_inputs['position_ids'],
|
| 608 |
+
output_hidden_states=True)
|
| 609 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
| 610 |
+
text_proj = output.hidden_states[-1][-1, :, :].clone()
|
| 611 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 612 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 613 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 614 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 615 |
+
|
| 616 |
+
prompt_embeds = prompt_embeds_list[0]
|
| 617 |
+
|
| 618 |
+
# get unconditional embeddings for classifier free guidance
|
| 619 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
| 620 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
| 621 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
| 622 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
| 623 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 624 |
+
# negative_prompt = negative_prompt or ""
|
| 625 |
+
uncond_tokens: List[str]
|
| 626 |
+
if negative_prompt is None:
|
| 627 |
+
uncond_tokens = [""] * batch_size
|
| 628 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
| 629 |
+
raise TypeError(
|
| 630 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 631 |
+
f" {type(prompt)}."
|
| 632 |
+
)
|
| 633 |
+
elif isinstance(negative_prompt, str):
|
| 634 |
+
uncond_tokens = [negative_prompt]
|
| 635 |
+
elif batch_size != len(negative_prompt):
|
| 636 |
+
raise ValueError(
|
| 637 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 638 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 639 |
+
" the batch size of `prompt`."
|
| 640 |
+
)
|
| 641 |
+
else:
|
| 642 |
+
uncond_tokens = negative_prompt
|
| 643 |
+
|
| 644 |
+
negative_prompt_embeds_list = []
|
| 645 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
| 646 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 647 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 648 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
| 649 |
+
|
| 650 |
+
max_length = prompt_embeds.shape[1]
|
| 651 |
+
uncond_input = tokenizer(
|
| 652 |
+
uncond_tokens,
|
| 653 |
+
padding="max_length",
|
| 654 |
+
max_length=max_length,
|
| 655 |
+
truncation=True,
|
| 656 |
+
return_tensors="pt",
|
| 657 |
+
).to('cuda')
|
| 658 |
+
output = text_encoder(
|
| 659 |
+
input_ids=uncond_input['input_ids'] ,
|
| 660 |
+
attention_mask=uncond_input['attention_mask'],
|
| 661 |
+
position_ids=uncond_input['position_ids'],
|
| 662 |
+
output_hidden_states=True)
|
| 663 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
| 664 |
+
negative_text_proj = output.hidden_states[-1][-1, :, :].clone()
|
| 665 |
+
|
| 666 |
+
if do_classifier_free_guidance:
|
| 667 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 668 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 669 |
+
|
| 670 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
| 671 |
+
|
| 672 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 673 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 674 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 678 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 679 |
+
# to avoid doing two forward passes
|
| 680 |
+
|
| 681 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
| 682 |
+
|
| 683 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
| 684 |
+
|
| 685 |
+
bs_embed = text_proj.shape[0]
|
| 686 |
+
text_proj = text_proj.repeat(1, num_images_per_prompt).view(
|
| 687 |
+
bs_embed * num_images_per_prompt, -1
|
| 688 |
+
)
|
| 689 |
+
negative_text_proj = negative_text_proj.repeat(1, num_images_per_prompt).view(
|
| 690 |
+
bs_embed * num_images_per_prompt, -1
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
return prompt_embeds, negative_prompt_embeds, text_proj, negative_text_proj
|
| 694 |
+
|
| 695 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 696 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 697 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 698 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 699 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 700 |
+
# and should be between [0, 1]
|
| 701 |
+
|
| 702 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 703 |
+
extra_step_kwargs = {}
|
| 704 |
+
if accepts_eta:
|
| 705 |
+
extra_step_kwargs["eta"] = eta
|
| 706 |
+
|
| 707 |
+
# check if the scheduler accepts generator
|
| 708 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 709 |
+
if accepts_generator:
|
| 710 |
+
extra_step_kwargs["generator"] = generator
|
| 711 |
+
return extra_step_kwargs
|
| 712 |
+
|
| 713 |
+
def check_inputs(
|
| 714 |
+
self,
|
| 715 |
+
prompt,
|
| 716 |
+
prompt_2,
|
| 717 |
+
image,
|
| 718 |
+
mask_image,
|
| 719 |
+
height,
|
| 720 |
+
width,
|
| 721 |
+
strength,
|
| 722 |
+
callback_steps,
|
| 723 |
+
output_type,
|
| 724 |
+
negative_prompt=None,
|
| 725 |
+
negative_prompt_2=None,
|
| 726 |
+
prompt_embeds=None,
|
| 727 |
+
negative_prompt_embeds=None,
|
| 728 |
+
ip_adapter_image=None,
|
| 729 |
+
ip_adapter_image_embeds=None,
|
| 730 |
+
callback_on_step_end_tensor_inputs=None,
|
| 731 |
+
padding_mask_crop=None,
|
| 732 |
+
):
|
| 733 |
+
if strength < 0 or strength > 1:
|
| 734 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 735 |
+
|
| 736 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 737 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 738 |
+
|
| 739 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
| 740 |
+
raise ValueError(
|
| 741 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 742 |
+
f" {type(callback_steps)}."
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 746 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 747 |
+
):
|
| 748 |
+
raise ValueError(
|
| 749 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
if prompt is not None and prompt_embeds is not None:
|
| 753 |
+
raise ValueError(
|
| 754 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 755 |
+
" only forward one of the two."
|
| 756 |
+
)
|
| 757 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 758 |
+
raise ValueError(
|
| 759 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 760 |
+
" only forward one of the two."
|
| 761 |
+
)
|
| 762 |
+
elif prompt is None and prompt_embeds is None:
|
| 763 |
+
raise ValueError(
|
| 764 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 765 |
+
)
|
| 766 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 767 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 768 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 769 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 770 |
+
|
| 771 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 772 |
+
raise ValueError(
|
| 773 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 774 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 775 |
+
)
|
| 776 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 777 |
+
raise ValueError(
|
| 778 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 779 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 783 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 784 |
+
raise ValueError(
|
| 785 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 786 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 787 |
+
f" {negative_prompt_embeds.shape}."
|
| 788 |
+
)
|
| 789 |
+
if padding_mask_crop is not None:
|
| 790 |
+
if not isinstance(image, PIL.Image.Image):
|
| 791 |
+
raise ValueError(
|
| 792 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
| 793 |
+
)
|
| 794 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
| 795 |
+
raise ValueError(
|
| 796 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
| 797 |
+
f" {type(mask_image)}."
|
| 798 |
+
)
|
| 799 |
+
if output_type != "pil":
|
| 800 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
| 801 |
+
|
| 802 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 803 |
+
raise ValueError(
|
| 804 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 805 |
+
)
|
| 806 |
+
|
| 807 |
+
if ip_adapter_image_embeds is not None:
|
| 808 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 809 |
+
raise ValueError(
|
| 810 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 811 |
+
)
|
| 812 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 813 |
+
raise ValueError(
|
| 814 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 815 |
+
)
|
| 816 |
+
|
| 817 |
+
def prepare_latents(
|
| 818 |
+
self,
|
| 819 |
+
batch_size,
|
| 820 |
+
num_channels_latents,
|
| 821 |
+
height,
|
| 822 |
+
width,
|
| 823 |
+
dtype,
|
| 824 |
+
device,
|
| 825 |
+
generator,
|
| 826 |
+
latents=None,
|
| 827 |
+
image=None,
|
| 828 |
+
timestep=None,
|
| 829 |
+
is_strength_max=True,
|
| 830 |
+
add_noise=True,
|
| 831 |
+
return_noise=False,
|
| 832 |
+
return_image_latents=False,
|
| 833 |
+
):
|
| 834 |
+
shape = (
|
| 835 |
+
batch_size,
|
| 836 |
+
num_channels_latents,
|
| 837 |
+
int(height) // self.vae_scale_factor,
|
| 838 |
+
int(width) // self.vae_scale_factor,
|
| 839 |
+
)
|
| 840 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 841 |
+
raise ValueError(
|
| 842 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 843 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
if (image is None or timestep is None) and not is_strength_max:
|
| 847 |
+
raise ValueError(
|
| 848 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
| 849 |
+
"However, either the image or the noise timestep has not been provided."
|
| 850 |
+
)
|
| 851 |
+
|
| 852 |
+
if image.shape[1] == 4:
|
| 853 |
+
image_latents = image.to(device=device, dtype=dtype)
|
| 854 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
| 855 |
+
elif return_image_latents or (latents is None and not is_strength_max):
|
| 856 |
+
image = image.to(device=device, dtype=dtype)
|
| 857 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
| 858 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
| 859 |
+
|
| 860 |
+
if latents is None and add_noise:
|
| 861 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 862 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
| 863 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
| 864 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
| 865 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
| 866 |
+
elif add_noise:
|
| 867 |
+
noise = latents.to(device)
|
| 868 |
+
latents = noise * self.scheduler.init_noise_sigma
|
| 869 |
+
else:
|
| 870 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 871 |
+
latents = image_latents.to(device)
|
| 872 |
+
|
| 873 |
+
outputs = (latents,)
|
| 874 |
+
|
| 875 |
+
if return_noise:
|
| 876 |
+
outputs += (noise,)
|
| 877 |
+
|
| 878 |
+
if return_image_latents:
|
| 879 |
+
outputs += (image_latents,)
|
| 880 |
+
|
| 881 |
+
return outputs
|
| 882 |
+
|
| 883 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
| 884 |
+
dtype = image.dtype
|
| 885 |
+
if self.vae.config.force_upcast:
|
| 886 |
+
image = image.float()
|
| 887 |
+
self.vae.to(dtype=torch.float32)
|
| 888 |
+
|
| 889 |
+
if isinstance(generator, list):
|
| 890 |
+
image_latents = [
|
| 891 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
| 892 |
+
for i in range(image.shape[0])
|
| 893 |
+
]
|
| 894 |
+
image_latents = torch.cat(image_latents, dim=0)
|
| 895 |
+
else:
|
| 896 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 897 |
+
|
| 898 |
+
if self.vae.config.force_upcast:
|
| 899 |
+
self.vae.to(dtype)
|
| 900 |
+
|
| 901 |
+
image_latents = image_latents.to(dtype)
|
| 902 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
| 903 |
+
|
| 904 |
+
return image_latents
|
| 905 |
+
|
| 906 |
+
def prepare_mask_latents(
|
| 907 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
| 908 |
+
):
|
| 909 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 910 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 911 |
+
# and half precision
|
| 912 |
+
mask = torch.nn.functional.interpolate(
|
| 913 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 914 |
+
)
|
| 915 |
+
mask = mask.to(device=device, dtype=dtype)
|
| 916 |
+
|
| 917 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 918 |
+
if mask.shape[0] < batch_size:
|
| 919 |
+
if not batch_size % mask.shape[0] == 0:
|
| 920 |
+
raise ValueError(
|
| 921 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 922 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 923 |
+
" of masks that you pass is divisible by the total requested batch size."
|
| 924 |
+
)
|
| 925 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 926 |
+
|
| 927 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
| 928 |
+
|
| 929 |
+
if masked_image is not None and masked_image.shape[1] == 4:
|
| 930 |
+
masked_image_latents = masked_image
|
| 931 |
+
else:
|
| 932 |
+
masked_image_latents = None
|
| 933 |
+
|
| 934 |
+
if masked_image is not None:
|
| 935 |
+
if masked_image_latents is None:
|
| 936 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 937 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
| 938 |
+
|
| 939 |
+
if masked_image_latents.shape[0] < batch_size:
|
| 940 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 941 |
+
raise ValueError(
|
| 942 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 943 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 944 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 945 |
+
)
|
| 946 |
+
masked_image_latents = masked_image_latents.repeat(
|
| 947 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
| 948 |
+
)
|
| 949 |
+
|
| 950 |
+
masked_image_latents = (
|
| 951 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
| 952 |
+
)
|
| 953 |
+
|
| 954 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
| 955 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
| 956 |
+
|
| 957 |
+
return mask, masked_image_latents
|
| 958 |
+
|
| 959 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
|
| 960 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
| 961 |
+
# get the original timestep using init_timestep
|
| 962 |
+
if denoising_start is None:
|
| 963 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 964 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 965 |
+
else:
|
| 966 |
+
t_start = 0
|
| 967 |
+
|
| 968 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
| 969 |
+
|
| 970 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
| 971 |
+
# that is, strength is determined by the denoising_start instead.
|
| 972 |
+
if denoising_start is not None:
|
| 973 |
+
discrete_timestep_cutoff = int(
|
| 974 |
+
round(
|
| 975 |
+
self.scheduler.config.num_train_timesteps
|
| 976 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
| 977 |
+
)
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
| 981 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
| 982 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
| 983 |
+
# because `num_inference_steps` might be even given that every timestep
|
| 984 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
| 985 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
| 986 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
| 987 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
| 988 |
+
num_inference_steps = num_inference_steps + 1
|
| 989 |
+
|
| 990 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
| 991 |
+
timesteps = timesteps[-num_inference_steps:]
|
| 992 |
+
return timesteps, num_inference_steps
|
| 993 |
+
|
| 994 |
+
return timesteps, num_inference_steps - t_start
|
| 995 |
+
|
| 996 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
| 997 |
+
def _get_add_time_ids(
|
| 998 |
+
self,
|
| 999 |
+
original_size,
|
| 1000 |
+
crops_coords_top_left,
|
| 1001 |
+
target_size,
|
| 1002 |
+
aesthetic_score,
|
| 1003 |
+
negative_aesthetic_score,
|
| 1004 |
+
negative_original_size,
|
| 1005 |
+
negative_crops_coords_top_left,
|
| 1006 |
+
negative_target_size,
|
| 1007 |
+
dtype,
|
| 1008 |
+
text_encoder_projection_dim=None,
|
| 1009 |
+
):
|
| 1010 |
+
if self.config.requires_aesthetics_score:
|
| 1011 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
| 1012 |
+
add_neg_time_ids = list(
|
| 1013 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
| 1014 |
+
)
|
| 1015 |
+
else:
|
| 1016 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
| 1017 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
| 1018 |
+
|
| 1019 |
+
passed_add_embed_dim = (
|
| 1020 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
| 1021 |
+
)
|
| 1022 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 1023 |
+
|
| 1024 |
+
if (
|
| 1025 |
+
expected_add_embed_dim > passed_add_embed_dim
|
| 1026 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
| 1027 |
+
):
|
| 1028 |
+
raise ValueError(
|
| 1029 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
| 1030 |
+
)
|
| 1031 |
+
elif (
|
| 1032 |
+
expected_add_embed_dim < passed_add_embed_dim
|
| 1033 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
| 1034 |
+
):
|
| 1035 |
+
raise ValueError(
|
| 1036 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
| 1037 |
+
)
|
| 1038 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
| 1039 |
+
raise ValueError(
|
| 1040 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 1041 |
+
)
|
| 1042 |
+
|
| 1043 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 1044 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
| 1045 |
+
|
| 1046 |
+
return add_time_ids, add_neg_time_ids
|
| 1047 |
+
|
| 1048 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1049 |
+
def upcast_vae(self):
|
| 1050 |
+
dtype = self.vae.dtype
|
| 1051 |
+
self.vae.to(dtype=torch.float32)
|
| 1052 |
+
use_torch_2_0_or_xformers = isinstance(
|
| 1053 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1054 |
+
(
|
| 1055 |
+
AttnProcessor2_0,
|
| 1056 |
+
XFormersAttnProcessor,
|
| 1057 |
+
LoRAXFormersAttnProcessor,
|
| 1058 |
+
LoRAAttnProcessor2_0,
|
| 1059 |
+
),
|
| 1060 |
+
)
|
| 1061 |
+
# if xformers or torch_2_0 is used attention block does not need
|
| 1062 |
+
# to be in float32 which can save lots of memory
|
| 1063 |
+
if use_torch_2_0_or_xformers:
|
| 1064 |
+
self.vae.post_quant_conv.to(dtype)
|
| 1065 |
+
self.vae.decoder.conv_in.to(dtype)
|
| 1066 |
+
self.vae.decoder.mid_block.to(dtype)
|
| 1067 |
+
|
| 1068 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1069 |
+
def get_guidance_scale_embedding(
|
| 1070 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
| 1071 |
+
) -> torch.Tensor:
|
| 1072 |
+
"""
|
| 1073 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 1074 |
+
|
| 1075 |
+
Args:
|
| 1076 |
+
w (`torch.Tensor`):
|
| 1077 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
| 1078 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
| 1079 |
+
Dimension of the embeddings to generate.
|
| 1080 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
| 1081 |
+
Data type of the generated embeddings.
|
| 1082 |
+
|
| 1083 |
+
Returns:
|
| 1084 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
| 1085 |
+
"""
|
| 1086 |
+
assert len(w.shape) == 1
|
| 1087 |
+
w = w * 1000.0
|
| 1088 |
+
|
| 1089 |
+
half_dim = embedding_dim // 2
|
| 1090 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 1091 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
| 1092 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
| 1093 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 1094 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 1095 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
| 1096 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
| 1097 |
+
return emb
|
| 1098 |
+
|
| 1099 |
+
@property
|
| 1100 |
+
def guidance_scale(self):
|
| 1101 |
+
return self._guidance_scale
|
| 1102 |
+
|
| 1103 |
+
@property
|
| 1104 |
+
def guidance_rescale(self):
|
| 1105 |
+
return self._guidance_rescale
|
| 1106 |
+
|
| 1107 |
+
@property
|
| 1108 |
+
def clip_skip(self):
|
| 1109 |
+
return self._clip_skip
|
| 1110 |
+
|
| 1111 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1112 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1113 |
+
# corresponds to doing no classifier free guidance.
|
| 1114 |
+
@property
|
| 1115 |
+
def do_classifier_free_guidance(self):
|
| 1116 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
| 1117 |
+
|
| 1118 |
+
@property
|
| 1119 |
+
def cross_attention_kwargs(self):
|
| 1120 |
+
return self._cross_attention_kwargs
|
| 1121 |
+
|
| 1122 |
+
@property
|
| 1123 |
+
def denoising_end(self):
|
| 1124 |
+
return self._denoising_end
|
| 1125 |
+
|
| 1126 |
+
@property
|
| 1127 |
+
def denoising_start(self):
|
| 1128 |
+
return self._denoising_start
|
| 1129 |
+
|
| 1130 |
+
@property
|
| 1131 |
+
def num_timesteps(self):
|
| 1132 |
+
return self._num_timesteps
|
| 1133 |
+
|
| 1134 |
+
@property
|
| 1135 |
+
def interrupt(self):
|
| 1136 |
+
return self._interrupt
|
| 1137 |
+
|
| 1138 |
+
@torch.no_grad()
|
| 1139 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 1140 |
+
def __call__(
|
| 1141 |
+
self,
|
| 1142 |
+
prompt: Union[str, List[str]] = None,
|
| 1143 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1144 |
+
image: PipelineImageInput = None,
|
| 1145 |
+
mask_image: PipelineImageInput = None,
|
| 1146 |
+
masked_image_latents: torch.Tensor = None,
|
| 1147 |
+
height: Optional[int] = None,
|
| 1148 |
+
width: Optional[int] = None,
|
| 1149 |
+
padding_mask_crop: Optional[int] = None,
|
| 1150 |
+
strength: float = 0.9999,
|
| 1151 |
+
num_inference_steps: int = 50,
|
| 1152 |
+
timesteps: List[int] = None,
|
| 1153 |
+
sigmas: List[float] = None,
|
| 1154 |
+
denoising_start: Optional[float] = None,
|
| 1155 |
+
denoising_end: Optional[float] = None,
|
| 1156 |
+
guidance_scale: float = 7.5,
|
| 1157 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1158 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1159 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1160 |
+
eta: float = 0.0,
|
| 1161 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1162 |
+
latents: Optional[torch.Tensor] = None,
|
| 1163 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 1164 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1165 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1166 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1167 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 1168 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 1169 |
+
output_type: Optional[str] = "pil",
|
| 1170 |
+
return_dict: bool = True,
|
| 1171 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1172 |
+
guidance_rescale: float = 0.0,
|
| 1173 |
+
original_size: Tuple[int, int] = None,
|
| 1174 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1175 |
+
target_size: Tuple[int, int] = None,
|
| 1176 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
| 1177 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1178 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 1179 |
+
aesthetic_score: float = 6.0,
|
| 1180 |
+
negative_aesthetic_score: float = 2.5,
|
| 1181 |
+
clip_skip: Optional[int] = None,
|
| 1182 |
+
callback_on_step_end: Optional[
|
| 1183 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 1184 |
+
] = None,
|
| 1185 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1186 |
+
**kwargs,
|
| 1187 |
+
):
|
| 1188 |
+
r"""
|
| 1189 |
+
Function invoked when calling the pipeline for generation.
|
| 1190 |
+
|
| 1191 |
+
Args:
|
| 1192 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 1193 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 1194 |
+
instead.
|
| 1195 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 1196 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 1197 |
+
used in both text-encoders
|
| 1198 |
+
image (`PIL.Image.Image`):
|
| 1199 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
| 1200 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
| 1201 |
+
mask_image (`PIL.Image.Image`):
|
| 1202 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 1203 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
| 1204 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
| 1205 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 1206 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1207 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1208 |
+
Anything below 512 pixels won't work well for
|
| 1209 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1210 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1211 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 1212 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 1213 |
+
Anything below 512 pixels won't work well for
|
| 1214 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
| 1215 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
| 1216 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
| 1217 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
| 1218 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
| 1219 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
| 1220 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
| 1221 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
| 1222 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
| 1223 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
| 1224 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
| 1225 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
| 1226 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
| 1227 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
| 1228 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
| 1229 |
+
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
|
| 1230 |
+
integer, the value of `strength` will be ignored.
|
| 1231 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1232 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1233 |
+
expense of slower inference.
|
| 1234 |
+
timesteps (`List[int]`, *optional*):
|
| 1235 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 1236 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 1237 |
+
passed will be used. Must be in descending order.
|
| 1238 |
+
sigmas (`List[float]`, *optional*):
|
| 1239 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 1240 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 1241 |
+
will be used.
|
| 1242 |
+
denoising_start (`float`, *optional*):
|
| 1243 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 1244 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
| 1245 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
| 1246 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
| 1247 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
| 1248 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
| 1249 |
+
denoising_end (`float`, *optional*):
|
| 1250 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 1251 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 1252 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
| 1253 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
| 1254 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
| 1255 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 1256 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
| 1257 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 1258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 1259 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 1260 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 1261 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 1262 |
+
usually at the expense of lower image quality.
|
| 1263 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1264 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 1265 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 1266 |
+
less than `1`).
|
| 1267 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 1268 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 1269 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 1270 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 1271 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1272 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 1273 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1274 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1275 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1276 |
+
argument.
|
| 1277 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1278 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 1279 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 1280 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1281 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1282 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 1283 |
+
input argument.
|
| 1284 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 1285 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 1286 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 1287 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 1288 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 1289 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 1290 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1291 |
+
The number of images to generate per prompt.
|
| 1292 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1293 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1294 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1295 |
+
generator (`torch.Generator`, *optional*):
|
| 1296 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1297 |
+
to make generation deterministic.
|
| 1298 |
+
latents (`torch.Tensor`, *optional*):
|
| 1299 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 1300 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1301 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 1302 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1303 |
+
The output format of the generate image. Choose between
|
| 1304 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1305 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1306 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1307 |
+
plain tuple.
|
| 1308 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 1309 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1310 |
+
`self.processor` in
|
| 1311 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1312 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1313 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
| 1314 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
| 1315 |
+
explained in section 2.2 of
|
| 1316 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1317 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1318 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
| 1319 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
| 1320 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1321 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1322 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1323 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
| 1324 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
| 1325 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1326 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1327 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
| 1328 |
+
micro-conditioning as explained in section 2.2 of
|
| 1329 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1330 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1331 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 1332 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
| 1333 |
+
micro-conditioning as explained in section 2.2 of
|
| 1334 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1335 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1336 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
| 1337 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
| 1338 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1339 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
| 1340 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
| 1341 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
| 1342 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
| 1343 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1344 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 1345 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
| 1346 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
| 1347 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
| 1348 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
| 1349 |
+
clip_skip (`int`, *optional*):
|
| 1350 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1351 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1352 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 1353 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 1354 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 1355 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1356 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 1357 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1358 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1359 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1360 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1361 |
+
|
| 1362 |
+
Examples:
|
| 1363 |
+
|
| 1364 |
+
Returns:
|
| 1365 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 1366 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
| 1367 |
+
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
| 1368 |
+
"""
|
| 1369 |
+
|
| 1370 |
+
callback = kwargs.pop("callback", None)
|
| 1371 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 1372 |
+
|
| 1373 |
+
if callback is not None:
|
| 1374 |
+
deprecate(
|
| 1375 |
+
"callback",
|
| 1376 |
+
"1.0.0",
|
| 1377 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1378 |
+
)
|
| 1379 |
+
if callback_steps is not None:
|
| 1380 |
+
deprecate(
|
| 1381 |
+
"callback_steps",
|
| 1382 |
+
"1.0.0",
|
| 1383 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
| 1384 |
+
)
|
| 1385 |
+
|
| 1386 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 1387 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 1388 |
+
|
| 1389 |
+
# 0. Default height and width to unet
|
| 1390 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 1391 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 1392 |
+
|
| 1393 |
+
# 1. Check inputs
|
| 1394 |
+
self.check_inputs(
|
| 1395 |
+
prompt,
|
| 1396 |
+
prompt_2,
|
| 1397 |
+
image,
|
| 1398 |
+
mask_image,
|
| 1399 |
+
height,
|
| 1400 |
+
width,
|
| 1401 |
+
strength,
|
| 1402 |
+
callback_steps,
|
| 1403 |
+
output_type,
|
| 1404 |
+
negative_prompt,
|
| 1405 |
+
negative_prompt_2,
|
| 1406 |
+
prompt_embeds,
|
| 1407 |
+
negative_prompt_embeds,
|
| 1408 |
+
ip_adapter_image,
|
| 1409 |
+
ip_adapter_image_embeds,
|
| 1410 |
+
callback_on_step_end_tensor_inputs,
|
| 1411 |
+
padding_mask_crop,
|
| 1412 |
+
)
|
| 1413 |
+
|
| 1414 |
+
self._guidance_scale = guidance_scale
|
| 1415 |
+
self._guidance_rescale = guidance_rescale
|
| 1416 |
+
self._clip_skip = clip_skip
|
| 1417 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1418 |
+
self._denoising_end = denoising_end
|
| 1419 |
+
self._denoising_start = denoising_start
|
| 1420 |
+
self._interrupt = False
|
| 1421 |
+
|
| 1422 |
+
# 2. Define call parameters
|
| 1423 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1424 |
+
batch_size = 1
|
| 1425 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1426 |
+
batch_size = len(prompt)
|
| 1427 |
+
else:
|
| 1428 |
+
batch_size = prompt_embeds.shape[0]
|
| 1429 |
+
|
| 1430 |
+
device = self._execution_device
|
| 1431 |
+
|
| 1432 |
+
# 3. Encode input prompt
|
| 1433 |
+
text_encoder_lora_scale = (
|
| 1434 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 1435 |
+
)
|
| 1436 |
+
|
| 1437 |
+
(
|
| 1438 |
+
prompt_embeds,
|
| 1439 |
+
negative_prompt_embeds,
|
| 1440 |
+
pooled_prompt_embeds,
|
| 1441 |
+
negative_pooled_prompt_embeds,
|
| 1442 |
+
) = self.encode_prompt(
|
| 1443 |
+
prompt=prompt,
|
| 1444 |
+
device=device,
|
| 1445 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1446 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1447 |
+
negative_prompt=negative_prompt,
|
| 1448 |
+
prompt_embeds=prompt_embeds,
|
| 1449 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1450 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1451 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1452 |
+
lora_scale=text_encoder_lora_scale,
|
| 1453 |
+
)
|
| 1454 |
+
|
| 1455 |
+
# 4. set timesteps
|
| 1456 |
+
def denoising_value_valid(dnv):
|
| 1457 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
| 1458 |
+
|
| 1459 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1460 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1461 |
+
)
|
| 1462 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
| 1463 |
+
num_inference_steps,
|
| 1464 |
+
strength,
|
| 1465 |
+
device,
|
| 1466 |
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
| 1467 |
+
)
|
| 1468 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
| 1469 |
+
if num_inference_steps < 1:
|
| 1470 |
+
raise ValueError(
|
| 1471 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
| 1472 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
| 1473 |
+
)
|
| 1474 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
| 1475 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 1476 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
| 1477 |
+
is_strength_max = strength == 1.0
|
| 1478 |
+
|
| 1479 |
+
# 5. Preprocess mask and image
|
| 1480 |
+
if padding_mask_crop is not None:
|
| 1481 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
| 1482 |
+
resize_mode = "fill"
|
| 1483 |
+
else:
|
| 1484 |
+
crops_coords = None
|
| 1485 |
+
resize_mode = "default"
|
| 1486 |
+
|
| 1487 |
+
original_image = image
|
| 1488 |
+
init_image = self.image_processor.preprocess(
|
| 1489 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
| 1490 |
+
)
|
| 1491 |
+
init_image = init_image.to(dtype=torch.float32)
|
| 1492 |
+
|
| 1493 |
+
mask = self.mask_processor.preprocess(
|
| 1494 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
| 1495 |
+
)
|
| 1496 |
+
|
| 1497 |
+
if masked_image_latents is not None:
|
| 1498 |
+
masked_image = masked_image_latents
|
| 1499 |
+
elif init_image.shape[1] == 4:
|
| 1500 |
+
# if images are in latent space, we can't mask it
|
| 1501 |
+
masked_image = None
|
| 1502 |
+
else:
|
| 1503 |
+
masked_image = init_image * (mask < 0.5)
|
| 1504 |
+
|
| 1505 |
+
# 6. Prepare latent variables
|
| 1506 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 1507 |
+
num_channels_unet = self.unet.config.in_channels
|
| 1508 |
+
return_image_latents = num_channels_unet == 4
|
| 1509 |
+
|
| 1510 |
+
add_noise = True if self.denoising_start is None else False
|
| 1511 |
+
latents_outputs = self.prepare_latents(
|
| 1512 |
+
batch_size * num_images_per_prompt,
|
| 1513 |
+
num_channels_latents,
|
| 1514 |
+
height,
|
| 1515 |
+
width,
|
| 1516 |
+
prompt_embeds.dtype,
|
| 1517 |
+
device,
|
| 1518 |
+
generator,
|
| 1519 |
+
latents,
|
| 1520 |
+
image=init_image,
|
| 1521 |
+
timestep=latent_timestep,
|
| 1522 |
+
is_strength_max=is_strength_max,
|
| 1523 |
+
add_noise=add_noise,
|
| 1524 |
+
return_noise=True,
|
| 1525 |
+
return_image_latents=return_image_latents,
|
| 1526 |
+
)
|
| 1527 |
+
|
| 1528 |
+
if return_image_latents:
|
| 1529 |
+
latents, noise, image_latents = latents_outputs
|
| 1530 |
+
else:
|
| 1531 |
+
latents, noise = latents_outputs
|
| 1532 |
+
|
| 1533 |
+
# 7. Prepare mask latent variables
|
| 1534 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
| 1535 |
+
mask,
|
| 1536 |
+
masked_image,
|
| 1537 |
+
batch_size * num_images_per_prompt,
|
| 1538 |
+
height,
|
| 1539 |
+
width,
|
| 1540 |
+
prompt_embeds.dtype,
|
| 1541 |
+
device,
|
| 1542 |
+
generator,
|
| 1543 |
+
self.do_classifier_free_guidance,
|
| 1544 |
+
)
|
| 1545 |
+
|
| 1546 |
+
# 8. Check that sizes of mask, masked image and latents match
|
| 1547 |
+
if num_channels_unet == 9:
|
| 1548 |
+
# default case for runwayml/stable-diffusion-inpainting
|
| 1549 |
+
num_channels_mask = mask.shape[1]
|
| 1550 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
| 1551 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
| 1552 |
+
raise ValueError(
|
| 1553 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
| 1554 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
| 1555 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
| 1556 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
| 1557 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
| 1558 |
+
)
|
| 1559 |
+
elif num_channels_unet != 4:
|
| 1560 |
+
raise ValueError(
|
| 1561 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
| 1562 |
+
)
|
| 1563 |
+
# 8.1 Prepare extra step kwargs.
|
| 1564 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1565 |
+
|
| 1566 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1567 |
+
height, width = latents.shape[-2:]
|
| 1568 |
+
height = height * self.vae_scale_factor
|
| 1569 |
+
width = width * self.vae_scale_factor
|
| 1570 |
+
|
| 1571 |
+
original_size = original_size or (height, width)
|
| 1572 |
+
target_size = target_size or (height, width)
|
| 1573 |
+
|
| 1574 |
+
# 10. Prepare added time ids & embeddings
|
| 1575 |
+
if negative_original_size is None:
|
| 1576 |
+
negative_original_size = original_size
|
| 1577 |
+
if negative_target_size is None:
|
| 1578 |
+
negative_target_size = target_size
|
| 1579 |
+
|
| 1580 |
+
add_text_embeds = pooled_prompt_embeds
|
| 1581 |
+
if self.text_encoder_2 is None:
|
| 1582 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
| 1583 |
+
else:
|
| 1584 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
| 1585 |
+
|
| 1586 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
| 1587 |
+
original_size,
|
| 1588 |
+
crops_coords_top_left,
|
| 1589 |
+
target_size,
|
| 1590 |
+
aesthetic_score,
|
| 1591 |
+
negative_aesthetic_score,
|
| 1592 |
+
negative_original_size,
|
| 1593 |
+
negative_crops_coords_top_left,
|
| 1594 |
+
negative_target_size,
|
| 1595 |
+
dtype=prompt_embeds.dtype,
|
| 1596 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
| 1597 |
+
)
|
| 1598 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
| 1599 |
+
|
| 1600 |
+
if self.do_classifier_free_guidance:
|
| 1601 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1602 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
| 1603 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
| 1604 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
| 1605 |
+
|
| 1606 |
+
prompt_embeds = prompt_embeds.to(device)
|
| 1607 |
+
add_text_embeds = add_text_embeds.to(device)
|
| 1608 |
+
add_time_ids = add_time_ids.to(device)
|
| 1609 |
+
|
| 1610 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1611 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1612 |
+
ip_adapter_image,
|
| 1613 |
+
ip_adapter_image_embeds,
|
| 1614 |
+
device,
|
| 1615 |
+
batch_size * num_images_per_prompt,
|
| 1616 |
+
self.do_classifier_free_guidance,
|
| 1617 |
+
)
|
| 1618 |
+
|
| 1619 |
+
|
| 1620 |
+
# 11. Denoising loop
|
| 1621 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1622 |
+
|
| 1623 |
+
if (
|
| 1624 |
+
self.denoising_end is not None
|
| 1625 |
+
and self.denoising_start is not None
|
| 1626 |
+
and denoising_value_valid(self.denoising_end)
|
| 1627 |
+
and denoising_value_valid(self.denoising_start)
|
| 1628 |
+
and self.denoising_start >= self.denoising_end
|
| 1629 |
+
):
|
| 1630 |
+
raise ValueError(
|
| 1631 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
| 1632 |
+
+ f" {self.denoising_end} when using type float."
|
| 1633 |
+
)
|
| 1634 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
| 1635 |
+
discrete_timestep_cutoff = int(
|
| 1636 |
+
round(
|
| 1637 |
+
self.scheduler.config.num_train_timesteps
|
| 1638 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
| 1639 |
+
)
|
| 1640 |
+
)
|
| 1641 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 1642 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1643 |
+
|
| 1644 |
+
# 11.1 Optionally get Guidance Scale Embedding
|
| 1645 |
+
timestep_cond = None
|
| 1646 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 1647 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 1648 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 1649 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 1650 |
+
).to(device=device, dtype=latents.dtype)
|
| 1651 |
+
|
| 1652 |
+
self._num_timesteps = len(timesteps)
|
| 1653 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1654 |
+
for i, t in enumerate(timesteps):
|
| 1655 |
+
if self.interrupt:
|
| 1656 |
+
continue
|
| 1657 |
+
# expand the latents if we are doing classifier free guidance
|
| 1658 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1659 |
+
|
| 1660 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
| 1661 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1662 |
+
|
| 1663 |
+
if num_channels_unet == 9:
|
| 1664 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
| 1665 |
+
|
| 1666 |
+
# predict the noise residual
|
| 1667 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
| 1668 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1669 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1670 |
+
noise_pred = self.unet(
|
| 1671 |
+
latent_model_input,
|
| 1672 |
+
t,
|
| 1673 |
+
encoder_hidden_states=prompt_embeds,
|
| 1674 |
+
timestep_cond=timestep_cond,
|
| 1675 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 1676 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 1677 |
+
return_dict=False,
|
| 1678 |
+
)[0]
|
| 1679 |
+
|
| 1680 |
+
# perform guidance
|
| 1681 |
+
if self.do_classifier_free_guidance:
|
| 1682 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1683 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1684 |
+
|
| 1685 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
| 1686 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 1687 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
| 1688 |
+
|
| 1689 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1690 |
+
latents_dtype = latents.dtype
|
| 1691 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 1692 |
+
if latents.dtype != latents_dtype:
|
| 1693 |
+
if torch.backends.mps.is_available():
|
| 1694 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1695 |
+
latents = latents.to(latents_dtype)
|
| 1696 |
+
|
| 1697 |
+
if num_channels_unet == 4:
|
| 1698 |
+
init_latents_proper = image_latents
|
| 1699 |
+
if self.do_classifier_free_guidance:
|
| 1700 |
+
init_mask, _ = mask.chunk(2)
|
| 1701 |
+
else:
|
| 1702 |
+
init_mask = mask
|
| 1703 |
+
|
| 1704 |
+
if i < len(timesteps) - 1:
|
| 1705 |
+
noise_timestep = timesteps[i + 1]
|
| 1706 |
+
init_latents_proper = self.scheduler.add_noise(
|
| 1707 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
| 1708 |
+
)
|
| 1709 |
+
|
| 1710 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
| 1711 |
+
|
| 1712 |
+
if callback_on_step_end is not None:
|
| 1713 |
+
callback_kwargs = {}
|
| 1714 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1715 |
+
callback_kwargs[k] = locals()[k]
|
| 1716 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1717 |
+
|
| 1718 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1719 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1720 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1721 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
| 1722 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1723 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1724 |
+
)
|
| 1725 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
| 1726 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
| 1727 |
+
mask = callback_outputs.pop("mask", mask)
|
| 1728 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
| 1729 |
+
|
| 1730 |
+
# call the callback, if provided
|
| 1731 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1732 |
+
progress_bar.update()
|
| 1733 |
+
if callback is not None and i % callback_steps == 0:
|
| 1734 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1735 |
+
callback(step_idx, t, latents)
|
| 1736 |
+
|
| 1737 |
+
if XLA_AVAILABLE:
|
| 1738 |
+
xm.mark_step()
|
| 1739 |
+
|
| 1740 |
+
if not output_type == "latent":
|
| 1741 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
| 1742 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 1743 |
+
|
| 1744 |
+
if needs_upcasting:
|
| 1745 |
+
self.upcast_vae()
|
| 1746 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1747 |
+
elif latents.dtype != self.vae.dtype:
|
| 1748 |
+
if torch.backends.mps.is_available():
|
| 1749 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1750 |
+
self.vae = self.vae.to(latents.dtype)
|
| 1751 |
+
|
| 1752 |
+
# unscale/denormalize the latents
|
| 1753 |
+
# denormalize with the mean and std if available and not None
|
| 1754 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
| 1755 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
| 1756 |
+
if has_latents_mean and has_latents_std:
|
| 1757 |
+
latents_mean = (
|
| 1758 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1759 |
+
)
|
| 1760 |
+
latents_std = (
|
| 1761 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1762 |
+
)
|
| 1763 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
| 1764 |
+
else:
|
| 1765 |
+
latents = latents / self.vae.config.scaling_factor
|
| 1766 |
+
|
| 1767 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1768 |
+
|
| 1769 |
+
# cast back to fp16 if needed
|
| 1770 |
+
if needs_upcasting:
|
| 1771 |
+
self.vae.to(dtype=torch.float16)
|
| 1772 |
+
else:
|
| 1773 |
+
return StableDiffusionXLPipelineOutput(images=latents)
|
| 1774 |
+
|
| 1775 |
+
# apply watermark if available
|
| 1776 |
+
if self.watermark is not None:
|
| 1777 |
+
image = self.watermark.apply_watermark(image)
|
| 1778 |
+
|
| 1779 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1780 |
+
|
| 1781 |
+
if padding_mask_crop is not None:
|
| 1782 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
| 1783 |
+
|
| 1784 |
+
# Offload all models
|
| 1785 |
+
self.maybe_free_model_hooks()
|
| 1786 |
+
|
| 1787 |
+
if not return_dict:
|
| 1788 |
+
return (image,)
|
| 1789 |
+
|
| 1790 |
+
return StableDiffusionXLPipelineOutput(images=image)
|