import spaces import random import torch from huggingface_hub import snapshot_download from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel import gradio as gr import numpy as np device = "cuda" ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting") text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device) tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) pipe = StableDiffusionXLInpaintPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler ) pipe.to(device) pipe.enable_attention_slicing() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer(prompt, image, mask_image = None, negative_prompt = "", seed = 0, randomize_seed = False, guidance_scale = 5.0, num_inference_steps = 25 ): if not isinstance(image, dict): image = dict({'background': image, 'layers': [mask_image]}) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) width, height = image['background'].size result = pipe( prompt = prompt, image = image['background'], mask_image = image['layers'][0], height=height, width=width, guidance_scale = guidance_scale, generator= generator, num_inference_steps= num_inference_steps, negative_prompt = negative_prompt, num_images_per_prompt = 1, strength = 0.999 ).images[0] return result examples = [ ["一只带着红色帽子的小猫咪,圆脸,大眼,极度可爱,高饱和度,立体,柔和的光线", "image/1.png", "image/1_masked.png"], ["This is a mouth-watering hot pot scene, with all kinds of delicious ingredients cooking in the boiling pot, emitting intoxicating heat and aroma. The fiery red peppers and bright chili oil are shining, with attractive and fascinating colors. The delicate thin-cut beef, refreshing tofu skin, enoki mushrooms with rich abalone sauce, and crisp vegetables in the pot are combined together to create a colorful visual presentation", "image/2.png", "image/2_masked.png"], ["穿着美少女战士的衣服,一件类似于水手服风格的衣服,包括一个白色紧身上衣,前胸搭配一个大大的红色蝴蝶结。衣服的领子部分呈蓝色,并且有白色条纹。她还穿着一条蓝色百褶裙,超高清,辛烷渲染,高级质感,32k,高分辨率,最好的质量,超级细节,景深", "image/3.png", "image/3_masked.png"], ["Wearing Iron Man's clothes, high-tech armor, the main colors are red and gold, and there are some silverdecorations. There is a light-up round reactor device on the chest, full of futuristic technology. Ultra-clear , high-quality, ultra-realistic, high-resolution, best quality, super details, depth of field", "image/4.png", "image/4_masked.png"], ] css=""" #col-left { margin: 0 auto; max-width: 600px; } #col-right { margin: 0 auto; max-width: 750px; } """ def load_description(fp): with open(fp, 'r', encoding='utf-8') as f: content = f.read() return content with gr.Blocks(css=css) as Kolors: gr.HTML(load_description("assets/title.md")) with gr.Row(): with gr.Column(elem_id="col-left"): with gr.Row(): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt", lines=2 ) with gr.Row(): image = gr.ImageEditor(label='Image', type='pil', image_mode='RGB', layers=False, brush=gr.Brush(colors=["#AAAAAA"], color_mode="fixed")) mask_image = gr.Image(label='Mask_Image',type='pil', visible=False, value=None) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", placeholder="Enter a negative prompt", value='残缺的手指,畸形的手指,畸形的手,残肢,模糊,低质量' ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=50, step=1, value=25, ) with gr.Row(): run_button = gr.Button("Run") with gr.Column(elem_id="col-right"): result = gr.Image(label="Result", show_label=False) with gr.Row(): gr.Examples( fn = infer, examples = examples, inputs = [prompt, image, mask_image], outputs = [result] ) run_button.click( fn = infer, inputs = [prompt, image, mask_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [result] ) Kolors.queue().launch(debug=True)