Spaces:
Sleeping
Sleeping
File size: 16,214 Bytes
5decbb5 34a5b9d 5decbb5 327a449 5decbb5 4d6ffe3 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 172c740 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 172c740 5decbb5 327a449 0842195 327a449 5decbb5 327a449 5decbb5 99512df 5decbb5 327a449 9f9c9d7 99512df 327a449 fb57672 fa986fd 327a449 99512df 327a449 172c740 327a449 172c740 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 d83a418 5decbb5 327a449 5decbb5 327a449 5decbb5 d83a418 327a449 5decbb5 327a449 d83a418 5decbb5 d83a418 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 172c740 5decbb5 172c740 5decbb5 172c740 5decbb5 172c740 327a449 5decbb5 327a449 5decbb5 327a449 fc25cff 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import subprocess
is_spaces = True if os.environ.get("SPACE_ID") else False
if is_spaces:
import spaces
# install flash-attention
subprocess.run(["pip", "install", "flash-attention", "--no-build-isolation"])
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
from dotenv import load_dotenv
load_dotenv()
# Add the current working directory to the Python path
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import os
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
if not is_spaces:
from toolkit.job import get_job
MAX_IMAGES = 150
def load_captioning(uploaded_images, concept_sentence):
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
# Update value of captioning area
text_value = "[trigger]" if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
updates.append(gr.update(placeholder=f'A photo of {concept_sentence} holding a sign that reads "Hello friend"'))
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
return updates
if is_spaces:
load_captioning = spaces.GPU()(load_captioning)
def create_dataset(*inputs):
print("Creating dataset")
images = inputs[0]
destination_folder = str(f"datasets/{uuid.uuid4()}")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = inputs[index + 1]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
if concept_sentence:
caption_text = f"{caption_text} [trigger]"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
def start_training(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None,
lora_name,
concept_sentence,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
):
if not lora_name:
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
print("Started training")
slugged_lora_name = slugify(lora_name)
# Load the default config
with open("train_lora_flux_24gb.yaml", "r") as f:
config = yaml.safe_load(f)
# Update the config with user inputs
config["config"]["name"] = slugged_lora_name
config["config"]["process"][0]["model"]["low_vram"] = True
config["config"]["process"][0]["train"]["skip_first_sample"] = True
config["config"]["process"][0]["train"]["steps"] = int(steps)
config["config"]["process"][0]["train"]["lr"] = float(lr)
config["config"]["process"][0]["network"]["linear"] = int(rank)
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{profile.username}/{slugged_lora_name}"
if concept_sentence:
config["config"]["process"][0]["trigger_word"] = concept_sentence
if sample_1 or sample_2 or sample_2:
config["config"]["process"][0]["train"]["disable_sampling"] = False
config["config"]["process"][0]["sample"]["sample_every"] = steps
config["config"]["process"][0]["sample"]["prompts"] = []
if sample_1:
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
if sample_2:
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
if sample_3:
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
else:
config["config"]["process"][0]["train"]["disable_sampling"] = True
# Save the updated config
# generate a random name for the config
random_config_name = str(uuid.uuid4())
config_path = f"/tmp/{random_config_name}-{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
if is_spaces:
print("Started training with spacerunner...")
# copy config to dataset_folder as config.yaml
shutil.copy(config_path, dataset_folder + "/config.yaml")
# get location of this script
script_location = os.path.dirname(os.path.abspath(__file__))
# copy script.py from current directory to dataset_folder
shutil.copy(script_location + "/script.py", dataset_folder)
# copy requirements.autotrain to dataset_folder as requirements.txt
shutil.copy(script_location + "/requirements.autotrain", dataset_folder + "/requirements.txt")
# command to run autotrain spacerunner
cmd = f"autotrain spacerunner --project-name {slugged_lora_name} --script-path {dataset_folder}"
cmd += f" --username {profile.username} --token {oauth_token.token} --backend spaces-l4x1"
outcome = subprocess.run(cmd.split())
if outcome.returncode == 0:
return f"""# Your training has started.
## - Training Status: <a href='https://huggingface.co/spaces/{profile.username}/autotrain-{slugged_lora_name}?logs=container'>{profile.username}/autotrain-{slugged_lora_name}</a> <small>(in the logs tab)</small>
## - Model page: <a href='https://huggingface.co/{profile.username}/{slugged_lora_name}'>{profile.username}/{slugged_lora_name}</a> <small>(will be available when training finishes)</small>"""
else:
print("Error: ", outcome.stderr)
raise gr.Error("Something went wrong. Make sure the name of your LoRA is unique and try again")
else:
# run the job locally
job = get_job(config_path)
job.run()
job.cleanup()
return f"Training completed successfully. Model saved as {slugged_lora_name}"
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = """
#component-1{text-align:center}
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
.tabitem{border: 0px}
"""
def swap_visibilty(profile: gr.OAuthProfile | None):
print(profile)
if is_spaces:
if profile is None:
return gr.update(elem_classes=["main_ui_logged_out"])
else:
print(profile.name)
return gr.update(elem_classes=["main_ui_logged_in"])
else:
return gr.update(elem_classes=["main_ui_logged_in"])
with gr.Blocks(theme=theme, css=css) as demo:
gr.Markdown(
"""# LoRA Ease for FLUX 🧞♂️
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)"""
)
if is_spaces:
gr.LoginButton("Sign in with Hugging Face to train your LoRA on Spaces", visible=is_spaces)
with gr.Tab("Train on Spaces" if is_spaces else "Train locally"):
with gr.Column() as main_ui:
with gr.Row():
lora_name = gr.Textbox(
label="The name of your LoRA",
info="This has to be a unique name",
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
)
# training_option = gr.Radio(
# label="What are you training?", choices=["object", "style", "character", "face", "custom"]
# )
concept_sentence = gr.Textbox(
label="Trigger word/sentence",
info="Trigger word or sentence to be used",
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
interactive=True,
)
with gr.Group(visible=True) as image_upload:
with gr.Row():
images = gr.File(
file_types=["image"],
label="Upload your images",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Column(scale=3, visible=False) as captioning_area:
with gr.Column():
gr.Markdown(
"""# Custom captioning
You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.
"""
)
do_captioning = gr.Button("Add AI captions with Florence-2")
output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Accordion("Advanced options", open=False):
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
with gr.Accordion("Sample prompts", visible=False) as sample:
gr.Markdown(
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
)
sample_1 = gr.Textbox(label="Test prompt 1")
sample_2 = gr.Textbox(label="Test prompt 2")
sample_3 = gr.Textbox(label="Test prompt 3")
output_components.append(sample)
output_components.append(sample_1)
output_components.append(sample_2)
output_components.append(sample_3)
start = gr.Button("Start training")
progress_area = gr.Markdown("")
with gr.Tab("Train locally" if is_spaces else "Instructions"):
gr.Markdown(
f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!)
```bash
git clone https://huggingface.co/spaces/flux-train/flux-lora-trainer
cd flux-lora-trainer
pip install requirements_local.txt
```
Then you can install ai-toolkit
```bash
git clone https://github.com/ostris/ai-toolkit.git
cd ai-toolkit
git submodule update --init --recursive
python3 -m venv venv
source venv/bin/activate
# .\venv\Scripts\activate on windows
# install torch first
pip3 install torch
pip3 install -r requirements.txt
cd ..
```
Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub
```bash
huggingface-cli login
```
Now you can run FLUX LoRA Ease locally by doing a simple
```py
python app.py
```
If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly.
"""
)
dataset_folder = gr.State()
images.upload(load_captioning, inputs=[images, concept_sentence], outputs=output_components, queue=False)
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder, queue=False).then(
fn=start_training,
inputs=[
lora_name,
concept_sentence,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
],
outputs=progress_area,
queue=False,
)
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
demo.load(fn=swap_visibilty, outputs=main_ui, queue=False)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True)
|