import os import subprocess from typing import Union is_spaces = True if os.environ.get("SPACE_ID") else False if is_spaces: subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import spaces from huggingface_hub import whoami os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import sys from dotenv import load_dotenv load_dotenv() # Add the current working directory to the Python path sys.path.insert(0, os.getcwd()) import gradio as gr from PIL import Image import torch import uuid import os import shutil import json import yaml from slugify import slugify from transformers import AutoProcessor, AutoModelForCausalLM if not is_spaces: from toolkit.job import get_job gr.OAuthProfile = None gr.OAuthToken = None MAX_IMAGES = 150 def load_captioning(uploaded_images, concept_sentence): gr.Info("Images uploaded!") updates = [] if len(uploaded_images) <= 1: raise gr.Error( "Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)" ) elif len(uploaded_images) > MAX_IMAGES: raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") # Update for the captioning_area # for _ in range(3): updates.append(gr.update(visible=True)) # Update visibility and image for each captioning row and image for i in range(1, MAX_IMAGES + 1): # Determine if the current row and image should be visible visible = i <= len(uploaded_images) # Update visibility of the captioning row updates.append(gr.update(visible=visible)) # Update for image component - display image if available, otherwise hide image_value = uploaded_images[i - 1] if visible else None updates.append(gr.update(value=image_value, visible=visible)) # Update value of captioning area text_value = "[trigger]" if visible and concept_sentence else None updates.append(gr.update(value=text_value, visible=visible)) # Update for the sample caption area updates.append(gr.update(visible=True)) # Update prompt samples updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall")) return updates def create_dataset(*inputs): print("Creating dataset") images = inputs[0] destination_folder = str(f"datasets/{uuid.uuid4()}") if not os.path.exists(destination_folder): os.makedirs(destination_folder) jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") with open(jsonl_file_path, "a") as jsonl_file: for index, image in enumerate(images): new_image_path = shutil.copy(image, destination_folder) original_caption = inputs[index + 1] file_name = os.path.basename(new_image_path) data = {"file_name": file_name, "prompt": original_caption} jsonl_file.write(json.dumps(data) + "\n") return destination_folder def run_captioning(images, concept_sentence, *captions): device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 model = AutoModelForCausalLM.from_pretrained( "microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True ).to(device) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True) captions = list(captions) for i, image_path in enumerate(images): print(captions[i]) if isinstance(image_path, str): # If image is a file path image = Image.open(image_path).convert("RGB") prompt = "" inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=prompt, image_size=(image.width, image.height) ) caption_text = parsed_answer[""].replace("The image shows ", "") if concept_sentence: caption_text = f"{caption_text} [trigger]" captions[i] = caption_text yield captions model.to("cpu") del model del processor if is_spaces: run_captioning = spaces.GPU()(run_captioning) def start_training( profile: Union[gr.OAuthProfile, None], oauth_token: Union[gr.OAuthToken, None], lora_name, concept_sentence, steps, lr, rank, dataset_folder, sample_1, sample_2, sample_3, ): if not lora_name: raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.") print("Started training") slugged_lora_name = slugify(lora_name) # Load the default config with open("train_lora_flux_24gb.yaml" if is_spaces else "config/examples/train_lora_flux_24gb.yaml", "r") as f: config = yaml.safe_load(f) # Update the config with user inputs config["config"]["name"] = slugged_lora_name config["config"]["process"][0]["model"]["low_vram"] = True config["config"]["process"][0]["train"]["skip_first_sample"] = True config["config"]["process"][0]["train"]["steps"] = int(steps) config["config"]["process"][0]["train"]["lr"] = float(lr) config["config"]["process"][0]["network"]["linear"] = int(rank) config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder config["config"]["process"][0]["save"]["push_to_hub"] = True config["config"]["process"][0]["save"]["hf_repo_id"] = f"{profile.username}/{slugged_lora_name}" config["config"]["process"][0]["save"]["hf_private"] = True if concept_sentence: config["config"]["process"][0]["trigger_word"] = concept_sentence if sample_1 or sample_2 or sample_2: config["config"]["process"][0]["train"]["disable_sampling"] = False config["config"]["process"][0]["sample"]["sample_every"] = steps config["config"]["process"][0]["sample"]["prompts"] = [] if sample_1: config["config"]["process"][0]["sample"]["prompts"].append(sample_1) if sample_2: config["config"]["process"][0]["sample"]["prompts"].append(sample_2) if sample_3: config["config"]["process"][0]["sample"]["prompts"].append(sample_3) else: config["config"]["process"][0]["train"]["disable_sampling"] = True # Save the updated config # generate a random name for the config random_config_name = str(uuid.uuid4()) config_path = f"/tmp/{random_config_name}-{slugged_lora_name}.yaml" with open(config_path, "w") as f: yaml.dump(config, f) if is_spaces: print("Started training with spacerunner...") # copy config to dataset_folder as config.yaml shutil.copy(config_path, dataset_folder + "/config.yaml") # get location of this script script_location = os.path.dirname(os.path.abspath(__file__)) # copy script.py from current directory to dataset_folder shutil.copy(script_location + "/script.py", dataset_folder) # copy requirements.autotrain to dataset_folder as requirements.txt shutil.copy(script_location + "/requirements.autotrain", dataset_folder + "/requirements.txt") # command to run autotrain spacerunner cmd = f"autotrain spacerunner --project-name {slugged_lora_name} --script-path {dataset_folder}" cmd += f" --username {profile.username} --token {oauth_token.token} --backend spaces-l4x1" outcome = subprocess.run(cmd.split()) if outcome.returncode == 0: return f"""# Your training has started. ## - Training Status: {profile.username}/autotrain-{slugged_lora_name} (in the logs tab) ## - Model page: {profile.username}/{slugged_lora_name} (will be available when training finishes)""" else: print("Error: ", outcome.stderr) raise gr.Error("Something went wrong. Make sure the name of your LoRA is unique and try again") else: # run the job locally job = get_job(config_path) job.run() job.cleanup() return f"Training completed successfully. Model saved as {slugged_lora_name}" theme = gr.themes.Monochrome( text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"), font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"], ) css = """ h1{font-size: 2em} h3{margin-top: 0} #component-1{text-align:center} .main_ui_logged_out{opacity: 0.3; pointer-events: none} .tabitem{border: 0px} #cost_preview_info{padding: .5em} """ def swap_visibilty(profile: Union[gr.OAuthProfile, None]): if is_spaces: if profile is None: return gr.update(elem_classes=["main_ui_logged_out"]) else: return gr.update(elem_classes=["main_ui_logged_in"]) else: return gr.update(elem_classes=["main_ui_logged_in"]) def update_pricing(steps, oauth_token: Union[gr.OAuthToken, None]): if(oauth_token and is_spaces): user = whoami(oauth_token.token) seconds_per_iteration = 7.54 total_seconds = (steps * seconds_per_iteration) + 240 cost_per_second = 0.80/60/60 cost = round(cost_per_second * total_seconds, 2) cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished. ### Estimated to cost < US$ {str(cost)} for {round(int(total_seconds)/60, 2)} minutes with your current train settings ({int(steps)} iterations at {seconds_per_iteration}s/it)''' if(user["canPay"]): return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True) else: pay_disclaimer = f'''## ⚠️ {user.name}, your account doesn't have a payment method. Set one up here and come back here to train your LoRA
''' return gr.update(visible=True), return gr.update(visible=True), pay_disclaimer+cost_preview, gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True) with gr.Blocks(theme=theme, css=css) as demo: gr.Markdown( """# LoRA Ease for FLUX 🧞‍♂️ ### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit) and [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced)""" ) if is_spaces: gr.LoginButton("Sign in with Hugging Face to train your LoRA on Spaces", visible=is_spaces) with gr.Tab("Train on Spaces" if is_spaces else "Train locally"): with gr.Column() as main_ui: with gr.Row(): lora_name = gr.Textbox( label="The name of your LoRA", info="This has to be a unique name", placeholder="e.g.: Persian Miniature Painting style, Cat Toy", ) # training_option = gr.Radio( # label="What are you training?", choices=["object", "style", "character", "face", "custom"] # ) concept_sentence = gr.Textbox( label="Trigger word/sentence", info="Trigger word or sentence to be used", placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'", interactive=True, ) with gr.Group(visible=True) as image_upload: with gr.Row(): images = gr.File( file_types=["image"], label="Upload your images", file_count="multiple", interactive=True, visible=True, scale=1, ) with gr.Column(scale=3, visible=False) as captioning_area: with gr.Column(): gr.Markdown( """# Custom captioning You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word. """ ) do_captioning = gr.Button("Add AI captions with Florence-2") output_components = [captioning_area] caption_list = [] for i in range(1, MAX_IMAGES + 1): locals()[f"captioning_row_{i}"] = gr.Row(visible=False) with locals()[f"captioning_row_{i}"]: locals()[f"image_{i}"] = gr.Image( type="filepath", width=111, height=111, min_width=111, interactive=False, scale=2, show_label=False, show_share_button=False, show_download_button=False, ) locals()[f"caption_{i}"] = gr.Textbox( label=f"Caption {i}", scale=15, interactive=True ) output_components.append(locals()[f"captioning_row_{i}"]) output_components.append(locals()[f"image_{i}"]) output_components.append(locals()[f"caption_{i}"]) caption_list.append(locals()[f"caption_{i}"]) with gr.Accordion("Advanced options", open=False): steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1) lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6) rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4) with gr.Accordion("Sample prompts (optional)", visible=False) as sample: gr.Markdown( "Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)" ) sample_1 = gr.Textbox(label="Test prompt 1") sample_2 = gr.Textbox(label="Test prompt 2") sample_3 = gr.Textbox(label="Test prompt 3") with gr.Column(visible=False) as cost_preview: cost_preview_info = gr.Markdown(elem_id="cost_preview_info") payment_update = gr.Button("I have set up a payment method", visible=False) output_components.append(sample) output_components.append(sample_1) output_components.append(sample_2) output_components.append(sample_3) start = gr.Button("Start training", visible=False) progress_area = gr.Markdown("") with gr.Tab("Train on your device" if is_spaces else "Instructions"): gr.Markdown( f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!). You'll need ~23GB of VRAM ```bash git clone https://huggingface.co/spaces/flux-train/flux-lora-trainer cd flux-lora-trainer ## Optional, start a venv environment ## python3 -m venv venv source venv/bin/activate # .\venv\Scripts\activate on windows # install torch first ## End of optional ## pip install requirements_local.txt ``` Then you can install ai-toolkit ```bash git clone https://github.com/ostris/ai-toolkit.git cd ai-toolkit git submodule update --init --recursive pip3 install torch pip3 install -r requirements.txt cd .. ``` Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub ```bash huggingface-cli login ``` Now you can run FLUX LoRA Ease locally with a UI by doing a simple ```py python app.py ``` If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly. """ ) dataset_folder = gr.State() images.upload( load_captioning, inputs=[images, concept_sentence], outputs=output_components ).then( update_pricing, inputs=[steps], outputs=[cost_preview, cost_preview_info, payment_update, start] ) gr.on( triggers=[steps.change, payment_update.click], fn=update_pricing, inputs=[steps], outputs=[cost_preview, cost_preview_info, payment_update, start] ) start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then( fn=start_training, inputs=[ lora_name, concept_sentence, steps, lr, rank, dataset_folder, sample_1, sample_2, sample_3, ], outputs=progress_area, ) do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list) demo.load(fn=swap_visibilty, outputs=main_ui) if __name__ == "__main__": demo.launch(share=True, show_error=True)