File size: 25,812 Bytes
e137e27
 
005657d
 
 
 
 
 
 
 
 
 
e137e27
 
 
 
 
8262fca
e137e27
 
 
 
005657d
87a6313
e137e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005657d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137e27
 
 
 
 
591cd18
e137e27
 
 
 
 
 
 
 
 
005657d
e137e27
 
 
 
 
 
 
 
 
 
 
 
 
5d3f993
e137e27
 
 
 
 
 
 
b2b380b
e137e27
 
 
 
 
 
 
b2b380b
e137e27
 
 
 
 
 
 
b2b380b
e137e27
 
 
 
 
 
 
a12d6cd
 
 
 
 
227158f
 
 
 
 
e137e27
6ff14ce
e137e27
 
 
 
6ff14ce
e137e27
 
 
 
 
 
 
 
 
 
 
 
 
 
005657d
 
e137e27
 
 
005657d
 
 
 
 
 
 
 
fb20585
 
005657d
 
 
fb20585
005657d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb20585
 
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce41f
 
ae7225f
12ce41f
68c89d0
12ce41f
0e10a03
b6d74c9
 
 
140edc3
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce41f
a1001c2
ae7225f
12ce41f
68c89d0
12ce41f
0e10a03
b6d74c9
 
a1001c2
140edc3
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce41f
a1001c2
3b0452b
12ce41f
0e10a03
 
a1001c2
140edc3
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb20585
8580754
 
 
 
 
 
005657d
8580754
 
a12d6cd
8580754
 
 
 
 
 
 
 
 
 
e137e27
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005657d
8580754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e137e27
8580754
e137e27
 
 
005657d
a12d6cd
87a6313
 
 
 
e137e27
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
from fasthtml.common import *
from fasthtml.components import *
from fasthtml.components import (
    D_title,
    D_article,
    D_front_matter,
    D_contents,
    D_byline,
    D_bibliography,
    D_appendix,
    D_cite,
)
from plotly import graph_objects as go
from fh_plotly import plotly2fasthtml
import pandas as pd
import json
from rich import print
import overview
import curated
import web
import common
import results
from pybtex.database import parse_file
import data_viewer


app, rt = fast_app(
    debug=True,
    pico=False,
    hdrs=(
        Meta(charset="UTF-8"),
        Meta(name="viewport", content="width=device-width, initial-scale=1.0"),
        Script(src="https://distill.pub/template.v2.js"),
        Script(src="https://unpkg.com/htmx.org@next/dist/htmx.min.js"),
        Script(src="https://cdn.plot.ly/plotly-latest.min.js"),
        Link(rel="stylesheet", href="style.css"),
        MarkdownJS(),
    ),
)


front_matter = """
<d-front-matter>
<script id='distill-front-matter' type="text/json">{
    "title": "",
    "description": "",
    "published": "",
    "affiliation": {},
    "authors": [
      {
        "author":"",
        "authorURL":""
      }
    ],
    "katex": {
      "delimiters": [
        {"left": "$$", "right": "$$", "display": false}
      ]
    }
  }
</script>
</d-front-matter>
"""


def read_bibs():
    bib_data = parse_file("bibliography.bib")
    cits = []
    for key in bib_data.entries.keys():
        cits.append(D_cite(bibtex_key=key))
    return cits


@app.get("/bibliography.bib")
def get():
    return FileResponse("bibliography.bib")


@app.get("/")
def main():
    return Div(
        D_title(
            H1(
                "TxT360: the most comprehensive, highest quality, and production ready pretraining dataset",
                cls="l-body",
                style="text-align: center;",
            ),
            Div(
                Img(src="images/llm360_logo.png"),
                id="title-plot",
                cls="main-plot-container l-page",
            ),
        ),
        Div(D_byline(), NotStr(front_matter), style="display: none;"),
        D_article(
            D_contents(
                Nav(
                    H3("Table of Contents"),
                    Div(
                        A("TxT360", href="#_self"),
                        hx_get="/intro",
                        hx_target="#inner-text",
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "About TxT360",
                                    href="/intro#section1",
                                    hx_get="/intro#section1",
                                    hx_target="#inner-text",
                                )
                            ),
                            Li(
                                A(
                                    "Motivation Behind Txt360",
                                    href="/intro#section2",
                                    hx_get="/intro#section2",
                                    hx_target="#inner-text",
                                )
                            ),
                            Li(
                                A(
                                    "Generalizable Approach to Data Processing",
                                    href="/intro#section3",
                                    hx_get="/intro#section3",
                                    hx_target="#inner-text",
                                )
                            ),
                            Li(
                                A(
                                    "Introducing Global Deduplication",
                                    href="/intro#section4",
                                    hx_get="/intro#section4",
                                    hx_target="#inner-text",
                                )
                            ),
                        ),
                    ),
                   # Div(
                   #     A("Overview", href="#inner-text"),
                   #     hx_get="/overview",
                    #    hx_target="#inner-text",
                   # ),
                    Div(
                        A("Global Processing Steps", href="#inner-text"),
                        hx_get="/common",
                        hx_target="#inner-text",
                    ),
                    Div(
                        A("Web Data Processing", href="#inner-text"),
                        hx_get="/webdata",
                        hx_target="#inner-text",
                    ),
                    Div(
                        A("Curated Sources Processing", href="#inner-text"),
                        hx_get="/curated",
                        hx_target="#inner-text",
                    ),
                    Div(
                        A("TxT360 Results", href="#inner-text"),
                        hx_get="/results",
                        hx_target="#inner-text",
                    ),
                    role="navigation",
                    cls="l-text figcaption",
                ),
            ),
            intro(),
        ),
        D_appendix(D_bibliography(src="bibliography.bib")),
        Div(*read_bibs(), style="display: none;"),
    )


intro_text = P(
    "Pretraining performant large language models (LLMs) requires trillions of tokens of high quality data. Many prior work, including our previous pretraining projects ",
    A("Amber-7B", href="https://huggingface.co/LLM360/Amber"),
    ", ",
    A("Crystal-7B", href="https://huggingface.co/LLM360/CrystalCoder"),
    ", ",
    A("K2-65B", href="https://huggingface.co/LLM360/K2"),
    " have demonstrated how data curation is a ‘make-or-break’ decision for model quality and capability.",
)

intro_list = P(
    "We present TxT360, the Trillion eXtracted Text corpus, a 5.7T token dataset for pretraining projects that:"
)

intro_list1 = Ol(
    Li(
        "Curates commonly used pretraining datasets, including all CommonCrawl",
        style="margin-bottom: 5px",
    ),
    Li(
        "Employs carefully selected filters designed for each data source",
        style="margin-bottom: 5px",
    ),
    Li(
        "Provides only unique data elements via globally deduplicated across all datasets",
        style="margin-bottom: 5px",
    ),
    Li(
        "Retains all deduplication metadata for custom upweighting",
        style="margin-bottom: 5px",
    ),
    Li(
        "Is Production ready! Download here [link to HF repo]",
        style="margin-bottom: 5px",
    ),
)


dataset_comparison1 = pd.DataFrame(
        {
            "Dataset": [
                "TxT360",
                "FineWeb",
                "RefinedWeb",
                "RedPajama-v2",
                "C4",
                "Dolma",
                "RedPajama-v1",
                "The Pile",
            ],
            "CommonCrawl": [
                "99 Snapshots",
                "96 Snapshots",
                "90 Snapshots",
                "84 Snapshots",
                "1 Snapshots",
                "24 Snapshots",
                "5 Snapshots",
                "0.6% of 74 Snapshots",
            ],
            "Papers": [
                "5 Sources",
                "-",
                "-",
                "-",
                "-",
                "1 Source",
                "1 Source",
                "4 Sources",
            ],
            "Wikipedia": [
                "310+ Languages",
                "-",
                "-",
                "-",
                "-",
                "what does a check mark mean?",
                "what does a check mark mean?",
                "English Only",
            ],
            "FreeLaw": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            "DM Math": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            "USPTO": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            
        }
    )

# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = dataset_comparison1.style.set_properties(
 **{'background-color': '#E1EEDB'}, subset=pd.IndexSlice[0,:]  # Row 0 with a light green background
).apply(
    lambda x: ['background-color: #E1EEDB' if i == 0 else ('background-color: rgb(237, 242, 251)' if i % 2 == 0 else 'background-color: white') for i in range(len(x))],
    axis=0
).hide(axis="index")  # Hide the row index

# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html = styled_table._repr_html_()
# table_html = dataset_comparison1.to_html(index=False, border=0)
table_div_1 = Div(NotStr(table_html), style="margin: 40px;")

dataset_comparison2 = pd.DataFrame(
        {
            "Dataset": [
                "TxT360",
                "FineWeb",
                "RefinedWeb",
                "RedPajama-v2",
                "C4",
                "Dolma",
                "RedPajama-v1",
                "The Pile",
            ],        
            
            "PG-19": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "Included",
                "Included",
                "Included",
            ],
            "HackerNews": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            "Ubuntu IRC": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            "EuroParl": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
            ],
            "StackExchange": [
                "Included",
                "-",
                "-",
                "-",
                "-",
                "-",
                "Included",
                "Included",
            ],
            "Code": [
                "- what is this?",
                "-",
                "-",
                "-",
                "-",
                "Included",
                "Included",
                "Included",
            ],
        }
    )
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = dataset_comparison2.style.set_properties(
    **{'background-color': '#E1EEDB'}, subset=pd.IndexSlice[0,:]  # Row 0 with a light green background
).apply(
    lambda x: ['background-color: #E1EEDB' if i == 0 else ('background-color: rgb(237, 242, 251)' if i % 2 == 0 else 'background-color: white') for i in range(len(x))],
    axis=0
).hide(axis="index")  # Hide the row index

# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html2 = styled_table._repr_html_()
# table_html2 = dataset_comparison2.to_html(index=False, border=0)
table_div_2 = Div(NotStr(table_html2), style="margin: 40px;")

dataset_sources = pd.DataFrame(
        {
            "Data Source": [
                "CommonCrawl",
                "Papers",
                "Wikipedia",
                "Freelaw",
                "DM Math",
                "USPTO",
                "PG-19",
                "HackerNews",
                "Ubuntu IRC",
                "Europarl",
                "StackExchange",
            ],
            "Raw Data Size": [
                "11 TB",
                "712 GB",
                "210 GB",
                "23 GB",
                "22 GB",
                "45 GB",
                "11 GB",
                "4.1 GB",
                "4.7 GB",
                "6.1 GB",
                "45 GB",
            ],
            "Token Count": [
                "5.71T",
                "154.96B",
                "4.75B",
                "7.34B",
                "5.23B",
                "4.95B",
                "2.94B",
                "1.08B",
                "1.54B",
                "1.96B",
                "8.37B",
            ],
            "Cut-Off Date": [
                "2024-30",
                "Q4 2023",
                "-",
                "Q1 2024",
                "-",
                "Q4 2023",
                "-",
                "Q4 2023",
                "Q4 2023",
                "-",
                "Q4 2023",
            ],
        }
    )
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = dataset_sources.style.apply(
    lambda x: ['background-color: white' if i % 2 == 0 else 'background-color: rgb(237, 242, 251)' for i in range(len(x))], 
    axis=0
).hide(axis="index")  # Hide the row index

table_html_data = styled_table._repr_html_()
# table_html_data = dataset_sources.to_html(index=False, border=0)
table_div_data = Div(NotStr(table_html_data), style="margin: 40px;")


def get_curated_chart():
        # Dataset
    data = {
      'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
      'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
      'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
      'Details': [
        'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
        'A database of biomedical and life sciences research articles.',
        'Abstracts of biomedical literature from various sources.',
        'Full-text articles from the Semantic Scholar Open Research Corpus.',
        'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
        'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
        'A collaborative online encyclopedia that covers a wide range of topics.',
        'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
        'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
        'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
        'Legal documents and court cases from various jurisdictions.',
        'A collection of books from Project Gutenberg, a digital library of public domain works.',
        'Patent documents from the United States Patent and Trademark Office.',
        'User-generated news and discussion platform focused on technology and startups.',
        'Deep Mind Maths dataset with generated questions.'
      ]
    }
    # Calculate percentage for each data source
    total_count = sum(data['Count'])
    data['Percentage'] = [count / total_count * 100 for count in data['Count']]
    
    # Create treemap
    fig = px.treemap(data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
    
    # Set the size of the chart
    fig.update_layout(width=800, height=600)
    
    # Display treemap
    st.plotly_chart(fig)

overview_div = Div(
        Section(
            H2("Overview"),
            H3("What This Section Contains"),
            Ul(
                Li("Motivation Behind TxT360", style = "margin-bottom: 5px"),
                Li("The Highlevel Data Process Approach", style = "margin-bottom: 5px"),
                Li("Introduction to Global Deduplication", style = "margin-bottom: 5px"),
            ),
            H2("Motivation Behind Txt360"),
            H3("TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."),
            P("The quality and size of a pre-training dataset play a crucial role in the performance of large language models (LLMs). Data is often referred as low quality if it has not been filtered to review unwanted text. The community has introduced a variety of filtered datasets including purely web-based datasets."),
            P("In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Both datasets play critical for effective LLM pre-training."),
            H4("The Gap TxT360 Fills"),
            P("Despite advancements in filtering and source material for both data types, each type of dataset has its limitations. RefinedWeb is known for its high quality content but and only about 10% of the entire dataset has been disclosed and the processing scripts have not been released. For datasets that have combined curated sources with web data, the web component is relatively small (NEED TO UPDATE - citation needed)."),
            P("By integrating the extensive reach of web data with the exceptional quality of curated sources, TxT360 meets and surpasess the rigorous standards required for state-of-the-art LLM pre-training as demostated in the Results section."),
            
            P("Table 1: The following table shows TxT360 and other well-known datasets on the coverage and size of data sources."),
            table_div_1,
            table_div_2,
            P("Table 2: Basic TxT360 Statistics."),
            table_div_data,
        ),
    Section(
            H2("Our Generalizable Approach to Data Processing"),
            P("To produce TxT360, a comprehensive and transparent data processing pipeline was designed to account for the nuances of both web and curated datasets. The pipeline presents a unified framework for processing both data types, making it convenient and easily adaptive for users to revise and fine-tune the pipeline for their own use cases."),
            P("Web datasets are inherently noisy and varied. Thus, the pipeline includes sophisticated filtering and deduplication techniques to clean the data and remove redundancies or irrelevant information."),
            P("Curated datasets are typically already structured and consistently formatted. TxT360 filters these sources with selective steps to maintain their integrity while providing seamless integration into the larger dataset."),
            P("We will open-source the scripts for the whole pipeline, allowing the community to review, replicate, and build upon our processes."),
            Img(src="images/pipeline.png", height = "300", width = "600" ),
            P("Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."),
        ),
    Section(
            H2("Introducing Global Deduplication"),
            P("Deduplication is crucial in language model pre-training for several reasons (NEEDS CITATION). Main hypothesis on why deduplicaiton is necessary and help include:"),
            Ul(
                Li("reducing data volume reduces training time (and cost)", style = "margin-bottom: 5px"),
                Li("removing duplicataive data can lead to better accuracy", style = "margin-bottom: 5px"),
                Li("prevent train-test overlap", style = "margin-bottom: 5px"),
                Li("minimizes the risk of memorization leading to test loss", style = "margin-bottom: 5px"),
            ),  
            P("Furthermore, by controlling the pretraining data distribution through deduplication and selective upsampling avoida relying on the often inconsistent distribution of internet-sourced data."),
            H3("Highlights of the TxT360 Deduplication Process"),
            P("Our deduplication process began with 61.8 TB of filtered, and compressed documents, totaling approximately 48.83 billion documents. We first performed exact deduplication using a Bloom filter, reducing the dataset by 17% to 40.21 billion documents. For global near-deduplication, we scaled methodologies from prior works like SlimPajama to handle the entire dataset, including 87 Common Crawl dumps and other curated data. This involved generating document signatures, matching them to identify near-duplicates, and clustering these to retain only one document per cluster. We prioritized retaining documents from curated sources and more recent CommonCrawl dumps. Throughout the deduplication stages, we extensively used Dask for distributed data processing."),
            P("After the global near-deduplication of all 87 CommonCrawl dumps and other curated data, we removed around 85% of the total documents. This leaves us with approximately 4.24 trillion deduplicated tokens, which aligns with what FineWeb has reported for their iterative global deduplication. Along with the list of duplicated documents to delete, our deduplication code also saves some metadata about the duplicate clusters that we find. We save statistics about every duplicate cluster we find, with the document ID of the document we retain from the cluster as the key and with a value capturing the distribution of the duplicates within the cluster over the CommonCrawl dumps (identified by the first 2 digits of every document ID). This way, we always have information about the duplicates we have deleted, allowing us to upsample any data distribution we want for training."),
            P("During deduplication, it is not feasible to store all the duplicate clusters we form, but we do save some samples at every size. Here are some observations we made by examining these sample duplicate clusters:"),
            Ul(
                Li("Smaller components tend to have more overlap in their MinHash bands. The smallest components, which are essentially pairs, consist of exact duplicate documents that local exact deduplication missed."),
                Li("When clusters contain three or more documents, incremental changes in the text become apparent. For example, there may be a growing list of personnel over the years."),
                Li("In sizable clusters comprising 1,000 or more documents, we observe a trend towards templatization. This involves the recurrent use of standardized language to convey general topics such as terms and conditions, warnings, and disclaimers. Such language is prevalent on commercial websites, offering a consistent and efficient way to communicate commonly encountered information."),
            ),
            P("All Deduplication details can be found in the Global Data Processing Steps section."),
        ),
)

@app.get("/intro")
def intro():
    return Div(
        Section(
            H2("About TxT360"),
            P("We introduce Trillion eXtracted Text (TxT360): the highest quality, most comprehensive, and production ready pretraining dataset released to date, an open source pre training textual dataset with the widest coverage to date, including all 99 Common Crawl snapshots released to date and 14 widely used curated sources such as Wikipedia, StackExchange, and ArXiv."),

            P("Building on top of the prior study on pre-training data, (cite  C4, chinchilla, fineweb, refinedweb, 2305.16264, ) TxT360 carefully implements data processing steps such as extraction, filtering, deduplication, PII removal and so on. Notably, we design a schema to provide users with full control on the weights of each data point, instead of relying on unknown distribution from the raw dataset.  Specifically, we strive to make each data point appear only once, via global deduplication across the whole corpus. Importantly, we store enough metadata to recover the raw distribution, and additionally allow one to have fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM and RedPajama V2, we present the final deduplicated dataset that is ready to go."),

            P("We have carefully implemented a large set of filters by carefully reviewing the input, output from data samples and tailored design for each data source. We learned from and compared our implementation with prior data pipelines, such as Chinchilla, C4, DataTrove, Dolma, and RedPajama Data V2 to make carefully considered decisions."),
            P("In light of the 360 open source spirit, we will open source the code and document all the implementation details in this blog post, along with the examples and why each decision is made, hoping to shed some light on this important but tedious step."),
            
            id="section1",
        ),
        overview_div,
        id="inner-text",
    )


#rt("/overview")(overview.overview)

rt("/update/{target}")(data_viewer.update)


rt("/curated")(curated.curated)

rt("/webdata")(web.web_data)

rt("/common")(common.common_steps)

rt("/results")(results.results)

serve()