Spaces:
Running
Running
File size: 26,856 Bytes
005657d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
@misc{refinedweb,
title={The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only},
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
year={2023},
eprint={2306.01116},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{redpajama-v1,
author = {Together Computer},
title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
month = {April},
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data/tree/rp_v1}
}
@article{redpajama-v2,
author = {Together Computer},
title = {RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models},
month = {October},
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
@article{dolma,
title = {Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research},
author={
Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and
Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and
Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and
Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and
Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and
Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and
Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo
},
year = {2024},
journal={arXiv preprint},
}
@article{fineweb,
author = {Guilherme Penedo and Hynek Kydlíček and Loubna Ben Allal and Anton Lozhkov and Colin Raffel and Leandro Werra and Thomas Wolf},
title = {🍷 FineWeb: decanting the web for the finest text data at scale},
month = {May},
year = 2024,
url = {https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1},
}
@misc{cerebras2023slimpajama,
author = {Soboleva, Daria and Al-Khateeb, Faisal and Myers, Robert and Steeves, Jacob R and Hestness, Joel and Dey, Nolan},
title = {SlimPajama: A 627B token cleaned and deduplicated version of RedPajama},
month = {June},
year = 2023,
url = {https://huggingface.co/datasets/cerebras/SlimPajama-627B},
}
@article{thepile,
title={The {P}ile: An 800{GB} dataset of diverse text for language modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
@misc{c4,
title={Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
author={Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
year={2023},
eprint={1910.10683},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{dclm,
author = {Jeffrey Li and
Alex Fang and
Georgios Smyrnis and
Maor Ivgi and
Matt Jordan and
Samir Yitzhak Gadre and
Hritik Bansal and
Etash Kumar Guha and
Sedrick Keh and
Kushal Arora and
Saurabh Garg and
Rui Xin and
Niklas Muennighoff and
Reinhard Heckel and
Jean Mercat and
Mayee Chen and
Suchin Gururangan and
Mitchell Wortsman and
Alon Albalak and
Yonatan Bitton and
Marianna Nezhurina and
Amro Abbas and
Cheng{-}Yu Hsieh and
Dhruba Ghosh and
Josh Gardner and
Maciej Kilian and
Hanlin Zhang and
Rulin Shao and
Sarah M. Pratt and
Sunny Sanyal and
Gabriel Ilharco and
Giannis Daras and
Kalyani Marathe and
Aaron Gokaslan and
Jieyu Zhang and
Khyathi Raghavi Chandu and
Thao Nguyen and
Igor Vasiljevic and
Sham M. Kakade and
Shuran Song and
Sujay Sanghavi and
Fartash Faghri and
Sewoong Oh and
Luke Zettlemoyer and
Kyle Lo and
Alaaeldin El{-}Nouby and
Hadi Pouransari and
Alexander Toshev and
Stephanie Wang and
Dirk Groeneveld and
Luca Soldaini and
Pang Wei Koh and
Jenia Jitsev and
Thomas Kollar and
Alexandros G. Dimakis and
Yair Carmon and
Achal Dave and
Ludwig Schmidt and
Vaishaal Shankar},
title = {DataComp-LM: In search of the next generation of training sets for
language models},
journal = {CoRR},
volume = {abs/2406.11794},
year = {2024},
url = {https://doi.org/10.48550/arXiv.2406.11794},
doi = {10.48550/ARXIV.2406.11794},
eprinttype = {arXiv},
eprint = {2406.11794},
timestamp = {Mon, 02 Sep 2024 16:44:37 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2406-11794.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{gopher,
author = {Jack W. Rae and
Sebastian Borgeaud and
Trevor Cai and
Katie Millican and
Jordan Hoffmann and
H. Francis Song and
John Aslanides and
Sarah Henderson and
Roman Ring and
Susannah Young and
Eliza Rutherford and
Tom Hennigan and
Jacob Menick and
Albin Cassirer and
Richard Powell and
George van den Driessche and
Lisa Anne Hendricks and
Maribeth Rauh and
Po{-}Sen Huang and
Amelia Glaese and
Johannes Welbl and
Sumanth Dathathri and
Saffron Huang and
Jonathan Uesato and
John Mellor and
Irina Higgins and
Antonia Creswell and
Nat McAleese and
Amy Wu and
Erich Elsen and
Siddhant M. Jayakumar and
Elena Buchatskaya and
David Budden and
Esme Sutherland and
Karen Simonyan and
Michela Paganini and
Laurent Sifre and
Lena Martens and
Xiang Lorraine Li and
Adhiguna Kuncoro and
Aida Nematzadeh and
Elena Gribovskaya and
Domenic Donato and
Angeliki Lazaridou and
Arthur Mensch and
Jean{-}Baptiste Lespiau and
Maria Tsimpoukelli and
Nikolai Grigorev and
Doug Fritz and
Thibault Sottiaux and
Mantas Pajarskas and
Toby Pohlen and
Zhitao Gong and
Daniel Toyama and
Cyprien de Masson d'Autume and
Yujia Li and
Tayfun Terzi and
Vladimir Mikulik and
Igor Babuschkin and
Aidan Clark and
Diego de Las Casas and
Aurelia Guy and
Chris Jones and
James Bradbury and
Matthew J. Johnson and
Blake A. Hechtman and
Laura Weidinger and
Iason Gabriel and
William Isaac and
Edward Lockhart and
Simon Osindero and
Laura Rimell and
Chris Dyer and
Oriol Vinyals and
Kareem Ayoub and
Jeff Stanway and
Lorrayne Bennett and
Demis Hassabis and
Koray Kavukcuoglu and
Geoffrey Irving},
title = {Scaling Language Models: Methods, Analysis {\&} Insights from
Training Gopher},
journal = {CoRR},
volume = {abs/2112.11446},
year = {2021},
url = {https://arxiv.org/abs/2112.11446},
eprinttype = {arXiv},
eprint = {2112.11446},
timestamp = {Sat, 02 Dec 2023 13:23:51 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2112-11446.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@inproceedings{barbaresi-2021-trafilatura,
title = {Trafilatura: A Web Scraping Library and Command-Line Tool for Text Discovery and Extraction},
author = "Barbaresi, Adrien",
booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations",
pages = "122--131",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-demo.15",
year = 2021,
}
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:1612.03651},
year={2016}
}
@article{joulin2016bag,
title={Bag of Tricks for Efficient Text Classification},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
journal={arXiv preprint arXiv:1607.01759},
year={2016}
}
@misc{penedo2024datatrove,
author = {Penedo, Guilherme and Kydlíček, Hynek and Cappelli, Alessandro and Sasko, Mario and Wolf, Thomas},
title = {DataTrove: large scale data processing},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
url = {https://github.com/huggingface/datatrove}
}
@misc{chiang2024chatbot,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
year={2024},
eprint={2403.04132},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@misc{rae2022scaling,
title={Scaling Language Models: Methods, Analysis & Insights from Training Gopher},
author={Jack W. Rae and Sebastian Borgeaud and Trevor Cai and Katie Millican and Jordan Hoffmann and Francis Song and John Aslanides and Sarah Henderson and Roman Ring and Susannah Young and Eliza Rutherford and Tom Hennigan and Jacob Menick and Albin Cassirer and Richard Powell and George van den Driessche and Lisa Anne Hendricks and Maribeth Rauh and Po-Sen Huang and Amelia Glaese and Johannes Welbl and Sumanth Dathathri and Saffron Huang and Jonathan Uesato and John Mellor and Irina Higgins and Antonia Creswell and Nat McAleese and Amy Wu and Erich Elsen and Siddhant Jayakumar and Elena Buchatskaya and David Budden and Esme Sutherland and Karen Simonyan and Michela Paganini and Laurent Sifre and Lena Martens and Xiang Lorraine Li and Adhiguna Kuncoro and Aida Nematzadeh and Elena Gribovskaya and Domenic Donato and Angeliki Lazaridou and Arthur Mensch and Jean-Baptiste Lespiau and Maria Tsimpoukelli and Nikolai Grigorev and Doug Fritz and Thibault Sottiaux and Mantas Pajarskas and Toby Pohlen and Zhitao Gong and Daniel Toyama and Cyprien de Masson d'Autume and Yujia Li and Tayfun Terzi and Vladimir Mikulik and Igor Babuschkin and Aidan Clark and Diego de Las Casas and Aurelia Guy and Chris Jones and James Bradbury and Matthew Johnson and Blake Hechtman and Laura Weidinger and Iason Gabriel and William Isaac and Ed Lockhart and Simon Osindero and Laura Rimell and Chris Dyer and Oriol Vinyals and Kareem Ayoub and Jeff Stanway and Lorrayne Bennett and Demis Hassabis and Koray Kavukcuoglu and Geoffrey Irving},
year={2022},
eprint={2112.11446},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{lee2022deduplicating,
title={Deduplicating Training Data Makes Language Models Better},
author={Katherine Lee and Daphne Ippolito and Andrew Nystrom and Chiyuan Zhang and Douglas Eck and Chris Callison-Burch and Nicholas Carlini},
year={2022},
eprint={2107.06499},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{carlini2023quantifying,
title={Quantifying Memorization Across Neural Language Models},
author={Nicholas Carlini and Daphne Ippolito and Matthew Jagielski and Katherine Lee and Florian Tramer and Chiyuan Zhang},
year={2023},
eprint={2202.07646},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{jaccard1912distribution,
title={The distribution of the flora in the alpine zone. 1},
author={Jaccard, Paul},
journal={New phytologist},
volume={11},
number={2},
pages={37--50},
year={1912},
publisher={Wiley Online Library}
}
@misc{albalak2024survey,
title={A Survey on Data Selection for Language Models},
author={Alon Albalak and Yanai Elazar and Sang Michael Xie and Shayne Longpre and Nathan Lambert and Xinyi Wang and Niklas Muennighoff and Bairu Hou and Liangming Pan and Haewon Jeong and Colin Raffel and Shiyu Chang and Tatsunori Hashimoto and William Yang Wang},
year={2024},
eprint={2402.16827},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{longpre2023pretrainers,
title={A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity},
author={Shayne Longpre and Gregory Yauney and Emily Reif and Katherine Lee and Adam Roberts and Barret Zoph and Denny Zhou and Jason Wei and Kevin Robinson and David Mimno and Daphne Ippolito},
year={2023},
eprint={2305.13169},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{wenzek2019ccnet,
title={CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data},
author={Guillaume Wenzek and Marie-Anne Lachaux and Alexis Conneau and Vishrav Chaudhary and Francisco Guzmán and Armand Joulin and Edouard Grave},
year={2019},
eprint={1911.00359},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{soldaini2024dolma,
title={Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research},
author={Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo},
year={2024},
eprint={2402.00159},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{ouyang2022training,
title={Training language models to follow instructions with human feedback},
author={Long Ouyang and Jeff Wu and Xu Jiang and Diogo Almeida and Carroll L. Wainwright and Pamela Mishkin and Chong Zhang and Sandhini Agarwal and Katarina Slama and Alex Ray and John Schulman and Jacob Hilton and Fraser Kelton and Luke Miller and Maddie Simens and Amanda Askell and Peter Welinder and Paul Christiano and Jan Leike and Ryan Lowe},
year={2022},
eprint={2203.02155},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{hoffmann2022training,
title={Training Compute-Optimal Large Language Models},
author={Jordan Hoffmann and Sebastian Borgeaud and Arthur Mensch and Elena Buchatskaya and Trevor Cai and Eliza Rutherford and Diego de Las Casas and Lisa Anne Hendricks and Johannes Welbl and Aidan Clark and Tom Hennigan and Eric Noland and Katie Millican and George van den Driessche and Bogdan Damoc and Aurelia Guy and Simon Osindero and Karen Simonyan and Erich Elsen and Jack W. Rae and Oriol Vinyals and Laurent Sifre},
year={2022},
eprint={2203.15556},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{muennighoff2023scaling,
title={Scaling Data-Constrained Language Models},
author={Niklas Muennighoff and Alexander M. Rush and Boaz Barak and Teven Le Scao and Aleksandra Piktus and Nouamane Tazi and Sampo Pyysalo and Thomas Wolf and Colin Raffel},
year={2023},
eprint={2305.16264},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{hernandez2022scaling,
title={Scaling Laws and Interpretability of Learning from Repeated Data},
author={Danny Hernandez and Tom Brown and Tom Conerly and Nova DasSarma and Dawn Drain and Sheer El-Showk and Nelson Elhage and Zac Hatfield-Dodds and Tom Henighan and Tristan Hume and Scott Johnston and Ben Mann and Chris Olah and Catherine Olsson and Dario Amodei and Nicholas Joseph and Jared Kaplan and Sam McCandlish},
year={2022},
eprint={2205.10487},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@misc{jiang2024mixtral,
title={Mixtral of Experts},
author={Albert Q. Jiang and Alexandre Sablayrolles and Antoine Roux and Arthur Mensch and Blanche Savary and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Emma Bou Hanna and Florian Bressand and Gianna Lengyel and Guillaume Bour and Guillaume Lample and Lélio Renard Lavaud and Lucile Saulnier and Marie-Anne Lachaux and Pierre Stock and Sandeep Subramanian and Sophia Yang and Szymon Antoniak and Teven Le Scao and Théophile Gervet and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
year={2024},
eprint={2401.04088},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{yuan2024self,
title={Self-rewarding language models},
author={Yuan, Weizhe and Pang, Richard Yuanzhe and Cho, Kyunghyun and Sukhbaatar, Sainbayar and Xu, Jing and Weston, Jason},
journal={arXiv preprint arXiv:2401.10020},
year={2024}
}
@article{verga2024replacing,
title={Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models},
author={Verga, Pat and Hofstatter, Sebastian and Althammer, Sophia and Su, Yixuan and Piktus, Aleksandra and Arkhangorodsky, Arkady and Xu, Minjie and White, Naomi and Lewis, Patrick},
journal={arXiv preprint arXiv:2404.18796},
year={2024}
}
@article{abdin2024phi,
title={Phi-3 technical report: A highly capable language model locally on your phone},
author={Abdin, Marah and Jacobs, Sam Ade and Awan, Ammar Ahmad and Aneja, Jyoti and Awadallah, Ahmed and Awadalla, Hany and Bach, Nguyen and Bahree, Amit and Bakhtiari, Arash and Behl, Harkirat and others},
journal={arXiv preprint arXiv:2404.14219},
year={2024}
}
@misc{meta2024responsible,
title = {Our responsible approach to Meta AI and Meta Llama 3},
author = {Meta},
year = {2024},
url = {https://ai.meta.com/blog/meta-llama-3-meta-ai-responsibility/},
note = {Accessed: 2024-05-31}
}
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
archivePrefix = "arXiv",
eprint = "1811.00937",
primaryClass = "cs",
}
@inproceedings{zellers-etal-2019-hellaswag,
title = "HellaSwag: Can a Machine Really Finish Your Sentence?",
author = "Zellers, Rowan and
Holtzman, Ari and
Bisk, Yonatan and
Farhadi, Ali and
Choi, Yejin",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1472",
doi = "10.18653/v1/P19-1472",
pages = "4791--4800",
abstract = "Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as {``}A woman sits at a piano,{''} a machine must select the most likely followup: {``}She sets her fingers on the keys.{''} With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans ({\textgreater}95{\%} accuracy), state-of-the-art models struggle ({\textless}48{\%}). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical {`}Goldilocks{'} zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.",
}
@inproceedings{OpenBookQA2018,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
booktitle={EMNLP},
year={2018}
}
@misc{bisk2019piqa,
title={PIQA: Reasoning about Physical Commonsense in Natural Language},
author={Yonatan Bisk and Rowan Zellers and Ronan Le Bras and Jianfeng Gao and Yejin Choi},
year={2019},
eprint={1911.11641},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{sap2019socialiqa,
title={SocialIQA: Commonsense Reasoning about Social Interactions},
author={Maarten Sap and Hannah Rashkin and Derek Chen and Ronan LeBras and Yejin Choi},
year={2019},
eprint={1904.09728},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{sakaguchi2019winogrande,
title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
year={2019},
eprint={1907.10641},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{clark2018think,
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
year={2018},
eprint={1803.05457},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@misc{hendrycks2021measuring,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY}
}
@misc{mitchell2023measuring,
title={Measuring Data},
author={Margaret Mitchell and Alexandra Sasha Luccioni and Nathan Lambert and Marissa Gerchick and Angelina McMillan-Major and Ezinwanne Ozoani and Nazneen Rajani and Tristan Thrush and Yacine Jernite and Douwe Kiela},
year={2023},
eprint={2212.05129},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@INPROCEEDINGS{6785473,
author={Kardes, Hakan and Agrawal, Siddharth and Xin Wang and Ang Sun},
booktitle={2014 International Conference on Computing, Networking and Communications (ICNC)},
title={CCF: Fast and scalable connected component computation in MapReduce},
year={2014},
volume={},
number={},
pages={994-998},
keywords={Couplings;Databases;Data mining;Algorithm design and analysis;Social network services;Feature extraction;Cleaning;Transitive Closure;Connected Components;Large Scale Graphs;Hadoop;MapReduce},
doi={10.1109/ICCNC.2014.6785473}}
|