victormiller commited on
Commit
14abefa
1 Parent(s): 366a2ff

Update results.py

Browse files
Files changed (1) hide show
  1. results.py +24 -0
results.py CHANGED
@@ -61,7 +61,30 @@ fig_val.update_layout(
61
  # Show the plot
62
  validation_loss_graph = fig_val
63
 
 
 
 
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
 
67
  #Perplexity Across Different Buckets (global)
@@ -746,6 +769,7 @@ upsampling_exp = Div(
746
  H3("Training Evaluations"),
747
  P("We also conducted full scale training using TxT360 and FineWeb-1.5T. Below are plots of the training and validation loss curves for each dataset. We can see that TxT360 achieves a lower training and validation loss compared to FineWeb-1.5T. "),
748
  plotly2fasthtml(validation_loss_graph),
 
749
  )
750
 
751
  perp1_div = Div(
 
61
  # Show the plot
62
  validation_loss_graph = fig_val
63
 
64
+ ## lm loss graph
65
+ # Load the data from the cleaned dataset
66
+ data = pd.read_csv('data/lm_loss_txt360_fineweb.csv') # Replace with your actual file path
67
 
68
+ # Create the plot
69
+ fig_loss = go.Figure()
70
+
71
+ # Add TxT360 line
72
+ fig_loss.add_trace(go.Scatter(x=data['Step'], y=data['TxT360'], mode='lines', name='TxT360'))
73
+
74
+ # Add FineWeb line
75
+ fig_loss.add_trace(go.Scatter(x=data['Step'], y=data['FineWeb'], mode='lines', name='FineWeb'))
76
+
77
+ # Update layout
78
+ fig_loss.update_layout(
79
+ title="Loss over Steps: TxT360 vs FineWeb",
80
+ xaxis_title="Steps",
81
+ yaxis_title="Loss",
82
+ legend_title="Models",
83
+ template="plotly_dark"
84
+ )
85
+
86
+ # Display the graph
87
+ lm_loss_graph = fig_loss
88
 
89
 
90
  #Perplexity Across Different Buckets (global)
 
769
  H3("Training Evaluations"),
770
  P("We also conducted full scale training using TxT360 and FineWeb-1.5T. Below are plots of the training and validation loss curves for each dataset. We can see that TxT360 achieves a lower training and validation loss compared to FineWeb-1.5T. "),
771
  plotly2fasthtml(validation_loss_graph),
772
+ plotly2fasthtml(lm_loss_graph),
773
  )
774
 
775
  perp1_div = Div(