Spaces:
Running
Running
Update web.py
Browse files
web.py
CHANGED
@@ -319,7 +319,10 @@ def web_data():
|
|
319 |
|
320 |
Details(
|
321 |
Summary("Non-English Documents"),
|
322 |
-
|
|
|
|
|
|
|
323 |
style="""
|
324 |
background-color: #FAEAEA; /* Light pink background */
|
325 |
padding: 15px;
|
@@ -332,7 +335,10 @@ def web_data():
|
|
332 |
|
333 |
Details(
|
334 |
Summary("English Documents Scoring Lower than 0.65"),
|
335 |
-
|
|
|
|
|
|
|
336 |
style="""
|
337 |
background-color: #EAFFF1; /* Light green background */
|
338 |
padding: 15px;
|
@@ -355,7 +361,10 @@ def web_data():
|
|
355 |
|
356 |
Details(
|
357 |
Summary("24 URL domains with more than 4k matches"),
|
358 |
-
|
|
|
|
|
|
|
359 |
style="""
|
360 |
background-color: #FAEAEA; /* Light pink background */
|
361 |
padding: 15px;
|
@@ -369,7 +378,10 @@ def web_data():
|
|
369 |
"""),
|
370 |
Details(
|
371 |
Summary("6 url domains that are removed from the blocklist"),
|
372 |
-
|
|
|
|
|
|
|
373 |
style="""
|
374 |
background-color: #FAEAEA; /* Light pink background */
|
375 |
padding: 15px;
|
@@ -380,11 +392,13 @@ def web_data():
|
|
380 |
|
381 |
Details(
|
382 |
Summary("Sample documents whose urls are blocked by the refined url blocklist"),
|
383 |
-
|
|
|
384 |
"data/bad_url_doc.jsonl",
|
385 |
3,
|
386 |
"Sample documents whose urls are blocked by the refined url blocklist",
|
387 |
-
),
|
|
|
388 |
style="""
|
389 |
background-color: #FAEAEA; /* Light pink background */
|
390 |
padding: 15px;
|
@@ -400,9 +414,12 @@ def web_data():
|
|
400 |
|
401 |
Details(
|
402 |
Summary("curated url domains that are excluded from our dataset"),
|
403 |
-
|
|
|
404 |
non_web_urls,
|
405 |
"curated url domains that are excluded from our dataset",
|
|
|
|
|
406 |
),
|
407 |
style="""
|
408 |
background-color: #FAEAEA; /* Light pink background */
|
@@ -414,7 +431,10 @@ def web_data():
|
|
414 |
|
415 |
Details(
|
416 |
Summary("Sample documents whose urls are in our curated url domain list"),
|
417 |
-
|
|
|
|
|
|
|
418 |
style="""
|
419 |
background-color: #EAFFF1; /* Light green background */
|
420 |
padding: 15px;
|
@@ -444,11 +464,14 @@ def web_data():
|
|
444 |
|
445 |
Details(
|
446 |
Summary("Sample documents with lines that are removed by the rule of terminal punctuation"),
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
|
|
|
|
|
|
452 |
style="""
|
453 |
background-color: #FAEAEA; /* Light pink background */
|
454 |
padding: 15px;
|
@@ -471,10 +494,13 @@ def web_data():
|
|
471 |
"""),
|
472 |
Details(
|
473 |
Summary("Sample documents that are removed by original C4 javascript rule but are kept after our refinement"),
|
474 |
-
|
|
|
475 |
"data/sample_java.jsonl",
|
476 |
0,
|
477 |
"Sample documents that are removed by original C4 javascript rule but are kept after our refinement",
|
|
|
|
|
478 |
),
|
479 |
style="""
|
480 |
background-color: #FAEAEA; /* Light pink background */
|
@@ -495,10 +521,13 @@ def web_data():
|
|
495 |
),
|
496 |
Details(
|
497 |
Summary("Sample documents with lines that are removed by the RefinedWeb rules"),
|
498 |
-
|
|
|
499 |
"data/sample_refinedweb_line.json",
|
500 |
0,
|
501 |
"Sample documents with lines that are removed by the RefinedWeb rules",
|
|
|
|
|
502 |
),
|
503 |
style="""
|
504 |
background-color: #FAEAEA; /* Light pink background */
|
@@ -517,9 +546,12 @@ def web_data():
|
|
517 |
"""),
|
518 |
Details(
|
519 |
Summary("Sample documents with toxic lines"),
|
520 |
-
|
|
|
521 |
json.load(open("data/toxic_lines.json")),
|
522 |
"Sample documents with toxic lines",
|
|
|
|
|
523 |
),
|
524 |
style="""
|
525 |
background-color: #FAEAEA; /* Light pink background */
|
@@ -535,9 +567,12 @@ def web_data():
|
|
535 |
"""),
|
536 |
Details(
|
537 |
Summary("Overview of all the quality signals that are used for filtering"),
|
538 |
-
|
|
|
539 |
json.load(open("data/all_signals.json")),
|
540 |
"Overview of all the quality signals that are used for filtering",
|
|
|
|
|
541 |
),
|
542 |
style="""
|
543 |
background-color: #EAFFF1; /* Light green background */
|
@@ -567,22 +602,25 @@ def web_data():
|
|
567 |
"""),
|
568 |
Details(
|
569 |
Summary("Implementations from Dolma"),
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
|
|
|
|
|
|
586 |
style="""
|
587 |
background-color: #FFFAEA; /* Light yellow background */
|
588 |
padding: 15px;
|
@@ -592,37 +630,40 @@ def web_data():
|
|
592 |
),
|
593 |
Details(
|
594 |
Summary("Implementations from DataTrove"),
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
|
|
|
|
|
|
626 |
style="""
|
627 |
background-color: #FFFAEA; /* Light yellow background */
|
628 |
padding: 15px;
|
@@ -654,22 +695,25 @@ def web_data():
|
|
654 |
H3("TxT360 Implementation"),
|
655 |
Details(
|
656 |
Summary("TxT360 Implementation"),
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
|
|
|
|
|
|
673 |
style="""
|
674 |
background-color: #EAFFF1; /* Light green background */
|
675 |
padding: 15px;
|
@@ -679,10 +723,13 @@ def web_data():
|
|
679 |
),
|
680 |
Details(
|
681 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
682 |
-
|
|
|
683 |
"data/repeat_line_frac.jsonl",
|
684 |
0,
|
685 |
"Sample documents filtered by excessive line repetitions / characters in repeated lines",
|
|
|
|
|
686 |
),
|
687 |
style="""
|
688 |
background-color: #EAFFF1; /* Light green background */
|
@@ -698,21 +745,24 @@ def web_data():
|
|
698 |
"""),
|
699 |
Details(
|
700 |
Summary("Implementations from Dolma"),
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
|
|
|
|
|
|
716 |
style="""
|
717 |
background-color: #FFFAEA; /* Light yellow background */
|
718 |
padding: 15px;
|
@@ -722,7 +772,8 @@ def web_data():
|
|
722 |
),
|
723 |
Details(
|
724 |
Summary("Implementations from RedPajama-V2"),
|
725 |
-
|
|
|
726 |
class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
|
727 |
## Base class for calculating the fraction of characters in the top N-gram. This operates on the lower-cased, punctation removed content.
|
728 |
NGRAM_SIZE: int = None
|
@@ -756,7 +807,9 @@ def web_data():
|
|
756 |
score = sum(len(w) for w in ngram) * count / total_chars
|
757 |
score = round(score, PRECISION)
|
758 |
return [(0, len(document), score)]
|
759 |
-
|
|
|
|
|
760 |
style="""
|
761 |
background-color: #FFFAEA; /* Light yellow background */
|
762 |
padding: 15px;
|
@@ -767,25 +820,28 @@ def web_data():
|
|
767 |
|
768 |
Details(
|
769 |
Summary("Implementations from DataTrove"),
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
|
|
|
|
|
|
789 |
style="""
|
790 |
background-color: #FFFAEA; /* Light yellow background */
|
791 |
padding: 15px;
|
@@ -805,20 +861,23 @@ def web_data():
|
|
805 |
"""),
|
806 |
Details(
|
807 |
Summary("TxT360 Implementation"),
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
|
|
|
|
|
|
822 |
style="""
|
823 |
background-color: #EAFFF1; /* Light green background */
|
824 |
padding: 15px;
|
@@ -828,10 +887,13 @@ def web_data():
|
|
828 |
),
|
829 |
Details(
|
830 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
831 |
-
|
|
|
832 |
"data/sample_top_ngram.json",
|
833 |
0,
|
834 |
"Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)",
|
|
|
|
|
835 |
),
|
836 |
style="""
|
837 |
background-color: #EAFFF1; /* Light green background */
|
@@ -848,23 +910,26 @@ def web_data():
|
|
848 |
"""),
|
849 |
Details(
|
850 |
Summary("Implementations from Dolma"),
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
868 |
style="""
|
869 |
background-color: #FFFAEA; /* Light yellow background */
|
870 |
padding: 15px;
|
@@ -874,56 +939,59 @@ def web_data():
|
|
874 |
),
|
875 |
Details(
|
876 |
Summary("Implementations from RedPajama-V2"),
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
887 |
)
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
word_lengths = np.array(list(map(len, document.normalized_words)))
|
917 |
-
chars_duped = np.sum(word_lengths * duplicated_grams)
|
918 |
-
total_chars = np.sum(word_lengths)
|
919 |
-
|
920 |
-
if total_chars == 0:
|
921 |
-
return [(0, len(document), 0.0)]
|
922 |
-
|
923 |
-
score = float(chars_duped / total_chars)
|
924 |
-
score = round(score, PRECISION)
|
925 |
-
return [(0, len(document), score)]
|
926 |
-
""", block="block", language="python"),
|
927 |
style="""
|
928 |
background-color: #FFFAEA; /* Light yellow background */
|
929 |
padding: 15px;
|
@@ -934,27 +1002,30 @@ def web_data():
|
|
934 |
|
935 |
Details(
|
936 |
Summary("Implementations from DataTrove"),
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
|
|
|
|
|
|
958 |
style="""
|
959 |
background-color: #FFFAEA; /* Light yellow background */
|
960 |
padding: 15px;
|
@@ -979,41 +1050,44 @@ def web_data():
|
|
979 |
"""),
|
980 |
Details(
|
981 |
Summary("TxT360 Implementation"),
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
994 |
else:
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
return float(chars_duped / total_chars)
|
1002 |
-
|
1003 |
-
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
1004 |
-
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
1005 |
-
...
|
1006 |
-
all_counts = all_ngram_counts_new(words)
|
1007 |
-
count_most_common_ngrams = (2, 3, 4)
|
1008 |
-
for n, ngram_counts in all_counts:
|
1009 |
-
if not ngram_counts:
|
1010 |
-
continue
|
1011 |
-
if n in count_most_common_ngrams:
|
1012 |
-
...
|
1013 |
-
else:
|
1014 |
-
score = get_dup_ngram_frac(n, ngram_counts, text)
|
1015 |
-
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, score))
|
1016 |
-
""", block="block", language="python"),
|
1017 |
style="""
|
1018 |
background-color: #EAFFF1; /* Light green background */
|
1019 |
padding: 15px;
|
@@ -1046,10 +1120,13 @@ def web_data():
|
|
1046 |
),
|
1047 |
Details(
|
1048 |
Summary("Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)"),
|
1049 |
-
|
|
|
1050 |
"data/sample_dup_ngram.json",
|
1051 |
0,
|
1052 |
"Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)",
|
|
|
|
|
1053 |
),
|
1054 |
style="""
|
1055 |
background-color: #EAFFF1; /* Light green background */
|
@@ -1067,22 +1144,25 @@ def web_data():
|
|
1067 |
"""),
|
1068 |
Details(
|
1069 |
Summary("Ellipsis Symbol Identification Implemetations"),
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
|
|
|
|
|
|
1086 |
style="""
|
1087 |
background-color: #FFFAEA; /* Light yellow background */
|
1088 |
padding: 15px;
|
@@ -1092,47 +1172,50 @@ def web_data():
|
|
1092 |
),
|
1093 |
Details(
|
1094 |
Summary("Bullet Point Identification Implemetations"),
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
1128 |
-
|
1129 |
-
|
1130 |
-
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
|
|
|
|
|
|
1136 |
style="""
|
1137 |
background-color: #FFFAEA; /* Light yellow background */
|
1138 |
padding: 15px;
|
@@ -1144,10 +1227,13 @@ def web_data():
|
|
1144 |
|
1145 |
Details(
|
1146 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
1147 |
-
|
|
|
1148 |
"data/line_info.json",
|
1149 |
0,
|
1150 |
"Sample documents that are filtered out by line-wise heuristics",
|
|
|
|
|
1151 |
),
|
1152 |
style="""
|
1153 |
background-color: #EAFFF1; /* Light green background */
|
@@ -1186,35 +1272,38 @@ def web_data():
|
|
1186 |
),
|
1187 |
Details(
|
1188 |
Summary("Implementations from RedPajama-V2"),
|
1189 |
-
|
1190 |
-
|
1191 |
-
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
1199 |
-
|
1200 |
-
|
1201 |
-
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
1217 |
-
|
|
|
|
|
|
|
1218 |
style="""
|
1219 |
background-color: #FFFAEA; /* Light yellow background */
|
1220 |
padding: 15px;
|
@@ -1225,13 +1314,16 @@ def web_data():
|
|
1225 |
|
1226 |
Details(
|
1227 |
Summary("Implementations from DataTrove"),
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
|
|
|
|
|
|
1235 |
style="""
|
1236 |
background-color: #FFFAEA; /* Light yellow background */
|
1237 |
padding: 15px;
|
@@ -1270,18 +1362,21 @@ def web_data():
|
|
1270 |
"""),
|
1271 |
Details(
|
1272 |
Summary("Implementations from RedPajama-V2"),
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
1281 |
-
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
|
|
|
|
|
|
1285 |
style="""
|
1286 |
background-color: #FFFAEA; /* Light yellow background */
|
1287 |
padding: 15px;
|
@@ -1295,15 +1390,18 @@ def web_data():
|
|
1295 |
"""),
|
1296 |
Details(
|
1297 |
Summary("TxT360 Implementation"),
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
1302 |
-
|
1303 |
-
|
1304 |
-
|
1305 |
-
|
1306 |
-
|
|
|
|
|
|
|
1307 |
style="""
|
1308 |
background-color: #EAFFF1; /* Light green background */
|
1309 |
padding: 15px;
|
@@ -1319,13 +1417,16 @@ def web_data():
|
|
1319 |
"""),
|
1320 |
Details(
|
1321 |
Summary("Implementations from Dolma"),
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
|
|
|
|
|
|
|
1329 |
style="""
|
1330 |
background-color: #FFFAEA; /* Light yellow background */
|
1331 |
padding: 15px;
|
@@ -1335,29 +1436,32 @@ def web_data():
|
|
1335 |
),
|
1336 |
Details(
|
1337 |
Summary("Implementations from RedPajama-V2"),
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
|
|
|
|
|
|
1361 |
style="""
|
1362 |
background-color: #FFFAEA; /* Light yellow background */
|
1363 |
padding: 15px;
|
@@ -1368,12 +1472,15 @@ def web_data():
|
|
1368 |
|
1369 |
Details(
|
1370 |
Summary("Implementations from DataTrove"),
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
|
|
|
|
|
|
1377 |
style="""
|
1378 |
background-color: #FFFAEA; /* Light yellow background */
|
1379 |
padding: 15px;
|
@@ -1383,13 +1490,16 @@ def web_data():
|
|
1383 |
),
|
1384 |
Details(
|
1385 |
Summary("TxT360 Implementation"),
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
|
|
|
|
|
|
1393 |
style="""
|
1394 |
background-color: #EAFFF1; /* Light green background */
|
1395 |
padding: 15px;
|
@@ -1401,11 +1511,14 @@ def web_data():
|
|
1401 |
H3("Fraction of Alphabetic Words"),
|
1402 |
Details(
|
1403 |
Summary("Implementations from Dolma"),
|
1404 |
-
|
1405 |
-
|
1406 |
-
|
1407 |
-
|
1408 |
-
|
|
|
|
|
|
|
1409 |
style="""
|
1410 |
background-color: #FFFAEA; /* Light yellow background */
|
1411 |
padding: 15px;
|
@@ -1415,27 +1528,30 @@ def web_data():
|
|
1415 |
),
|
1416 |
Details(
|
1417 |
Summary("Implementations from RedPajama-V2"),
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
|
1425 |
-
|
1426 |
-
|
1427 |
-
|
1428 |
-
|
1429 |
-
|
1430 |
-
|
1431 |
-
|
1432 |
-
|
1433 |
-
|
1434 |
-
|
1435 |
-
|
1436 |
-
|
1437 |
-
|
1438 |
-
|
|
|
|
|
|
|
1439 |
style="""
|
1440 |
background-color: #FFFAEA; /* Light yellow background */
|
1441 |
padding: 15px;
|
@@ -1445,14 +1561,17 @@ def web_data():
|
|
1445 |
),
|
1446 |
Details(
|
1447 |
Summary("Implementations from DataTrove"),
|
1448 |
-
|
1449 |
-
|
1450 |
-
|
1451 |
-
|
1452 |
-
|
1453 |
-
|
1454 |
-
|
1455 |
-
|
|
|
|
|
|
|
1456 |
style="""
|
1457 |
background-color: #FFFAEA; /* Light yellow background */
|
1458 |
padding: 15px;
|
@@ -1480,10 +1599,13 @@ def web_data():
|
|
1480 |
H3("TxT360 Implementation"),
|
1481 |
Details(
|
1482 |
Summary("Sample documents that are filtered out by statistics-based heuristics"),
|
1483 |
-
|
|
|
1484 |
"data/sample_doc_stat.json",
|
1485 |
0,
|
1486 |
"Sample documents that are filtered out by statistics-based heuristics",
|
|
|
|
|
1487 |
),
|
1488 |
style="""
|
1489 |
background-color: #EAFFF1; /* Light green background */
|
@@ -1500,7 +1622,10 @@ def web_data():
|
|
1500 |
|
1501 |
Details(
|
1502 |
Summary("Sample documents containing 'lorem ipsum'"),
|
1503 |
-
|
|
|
|
|
|
|
1504 |
style="""
|
1505 |
background-color: #FAEAEA; /* Light pink background */
|
1506 |
padding: 15px;
|
|
|
319 |
|
320 |
Details(
|
321 |
Summary("Non-English Documents"),
|
322 |
+
Div(
|
323 |
+
DV("data/sample_non_en.json", 3, "Sample documents that are classified as non-English"),
|
324 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
325 |
+
),
|
326 |
style="""
|
327 |
background-color: #FAEAEA; /* Light pink background */
|
328 |
padding: 15px;
|
|
|
335 |
|
336 |
Details(
|
337 |
Summary("English Documents Scoring Lower than 0.65"),
|
338 |
+
Div(
|
339 |
+
DV("data/sample_en_low.json", 3, "Sample documents that are classified as English but with score less than 0.65"),
|
340 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
341 |
+
),
|
342 |
style="""
|
343 |
background-color: #EAFFF1; /* Light green background */
|
344 |
padding: 15px;
|
|
|
361 |
|
362 |
Details(
|
363 |
Summary("24 URL domains with more than 4k matches"),
|
364 |
+
Div (
|
365 |
+
DVS(urls_high_matches, "24 URL domains with more than 4k matches"),
|
366 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
367 |
+
),
|
368 |
style="""
|
369 |
background-color: #FAEAEA; /* Light pink background */
|
370 |
padding: 15px;
|
|
|
378 |
"""),
|
379 |
Details(
|
380 |
Summary("6 url domains that are removed from the blocklist"),
|
381 |
+
Div (
|
382 |
+
DVS(urls_false_positives, "6 url domains that are removed from the blocklist"),
|
383 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
384 |
+
),
|
385 |
style="""
|
386 |
background-color: #FAEAEA; /* Light pink background */
|
387 |
padding: 15px;
|
|
|
392 |
|
393 |
Details(
|
394 |
Summary("Sample documents whose urls are blocked by the refined url blocklist"),
|
395 |
+
Div(
|
396 |
+
DV(
|
397 |
"data/bad_url_doc.jsonl",
|
398 |
3,
|
399 |
"Sample documents whose urls are blocked by the refined url blocklist",
|
400 |
+
), style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
401 |
+
),
|
402 |
style="""
|
403 |
background-color: #FAEAEA; /* Light pink background */
|
404 |
padding: 15px;
|
|
|
414 |
|
415 |
Details(
|
416 |
Summary("curated url domains that are excluded from our dataset"),
|
417 |
+
Div (
|
418 |
+
DVS(
|
419 |
non_web_urls,
|
420 |
"curated url domains that are excluded from our dataset",
|
421 |
+
),
|
422 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
423 |
),
|
424 |
style="""
|
425 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
431 |
|
432 |
Details(
|
433 |
Summary("Sample documents whose urls are in our curated url domain list"),
|
434 |
+
Div (
|
435 |
+
DV("data/sample_url_exclusion.json", 0, "Sample documents whose urls are in our curated url domain list"),
|
436 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
437 |
+
),
|
438 |
style="""
|
439 |
background-color: #EAFFF1; /* Light green background */
|
440 |
padding: 15px;
|
|
|
464 |
|
465 |
Details(
|
466 |
Summary("Sample documents with lines that are removed by the rule of terminal punctuation"),
|
467 |
+
Div (
|
468 |
+
DV(
|
469 |
+
"data/sample_terminal_punc.json",
|
470 |
+
0,
|
471 |
+
"Sample documents with lines that are removed by the rule of terminal punctuation",
|
472 |
+
),
|
473 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
474 |
+
),
|
475 |
style="""
|
476 |
background-color: #FAEAEA; /* Light pink background */
|
477 |
padding: 15px;
|
|
|
494 |
"""),
|
495 |
Details(
|
496 |
Summary("Sample documents that are removed by original C4 javascript rule but are kept after our refinement"),
|
497 |
+
Div (
|
498 |
+
DV(
|
499 |
"data/sample_java.jsonl",
|
500 |
0,
|
501 |
"Sample documents that are removed by original C4 javascript rule but are kept after our refinement",
|
502 |
+
),
|
503 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
504 |
),
|
505 |
style="""
|
506 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
521 |
),
|
522 |
Details(
|
523 |
Summary("Sample documents with lines that are removed by the RefinedWeb rules"),
|
524 |
+
Div (
|
525 |
+
DV(
|
526 |
"data/sample_refinedweb_line.json",
|
527 |
0,
|
528 |
"Sample documents with lines that are removed by the RefinedWeb rules",
|
529 |
+
),
|
530 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
531 |
),
|
532 |
style="""
|
533 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
546 |
"""),
|
547 |
Details(
|
548 |
Summary("Sample documents with toxic lines"),
|
549 |
+
Div (
|
550 |
+
DVS(
|
551 |
json.load(open("data/toxic_lines.json")),
|
552 |
"Sample documents with toxic lines",
|
553 |
+
),
|
554 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
555 |
),
|
556 |
style="""
|
557 |
background-color: #FAEAEA; /* Light pink background */
|
|
|
567 |
"""),
|
568 |
Details(
|
569 |
Summary("Overview of all the quality signals that are used for filtering"),
|
570 |
+
Div (
|
571 |
+
DVS(
|
572 |
json.load(open("data/all_signals.json")),
|
573 |
"Overview of all the quality signals that are used for filtering",
|
574 |
+
),
|
575 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
576 |
),
|
577 |
style="""
|
578 |
background-color: #EAFFF1; /* Light green background */
|
|
|
602 |
"""),
|
603 |
Details(
|
604 |
Summary("Implementations from Dolma"),
|
605 |
+
Div(
|
606 |
+
D_code("""
|
607 |
+
words = text.split()
|
608 |
+
word_count = len(words)
|
609 |
+
character_count = sum(len(word) for word in words)
|
610 |
+
...
|
611 |
+
lines = text.split("\n")
|
612 |
+
line_count = len(lines)
|
613 |
+
...
|
614 |
+
line_counts = Counter(lines)
|
615 |
+
attrs.fraction_of_duplicate_lines = sum(count for line, count in line_counts.items() if count > 1) / max(
|
616 |
+
line_count, 1
|
617 |
+
)
|
618 |
+
attrs.fraction_of_characters_in_duplicate_lines = sum(
|
619 |
+
len(line) * count for line, count in line_counts.items() if count > 1
|
620 |
+
) / max(character_count, 1)
|
621 |
+
""", block="block", language="python"),
|
622 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
623 |
+
),
|
624 |
style="""
|
625 |
background-color: #FFFAEA; /* Light yellow background */
|
626 |
padding: 15px;
|
|
|
630 |
),
|
631 |
Details(
|
632 |
Summary("Implementations from DataTrove"),
|
633 |
+
Div(
|
634 |
+
D_code("""
|
635 |
+
def find_duplicates(x: list[str]) -> tuple[int, int]:
|
636 |
+
unique_x = set()
|
637 |
+
duplicate_chars = 0
|
638 |
+
duplicate_elements = 0
|
639 |
+
for element in x:
|
640 |
+
if element in unique_x:
|
641 |
+
duplicate_chars += len(element)
|
642 |
+
duplicate_elements += 1
|
643 |
+
|
644 |
+
else:
|
645 |
+
unique_x.add(element)
|
646 |
+
return duplicate_elements, duplicate_chars
|
647 |
+
...
|
648 |
+
self.paragraph_exp = re.compile(r"\n{2,}")
|
649 |
+
self._line_splitter = re.compile("\n+")
|
650 |
+
...
|
651 |
+
paragraphs = self.paragraph_exp.split(text.strip())
|
652 |
+
paragraphs_duplicates, char_duplicates = find_duplicates(paragraphs)
|
653 |
+
if self.dup_para_frac and paragraphs_duplicates / len(paragraphs) > self.dup_para_frac:
|
654 |
+
return False, "dup_para_frac"
|
655 |
+
if self.dup_para_char_frac and char_duplicates / len(text) > self.dup_para_char_frac:
|
656 |
+
return False, "dup_para_char_frac"
|
657 |
+
|
658 |
+
lines = self._line_splitter.split(text)
|
659 |
+
line_duplicates, char_duplicates = find_duplicates(lines)
|
660 |
+
if self.dup_line_frac and line_duplicates / len(lines) > self.dup_line_frac:
|
661 |
+
return False, "dup_line_frac"
|
662 |
+
if self.dup_line_char_frac and char_duplicates / len(text) > self.dup_line_char_frac:
|
663 |
+
return False, "dup_line_char_frac"
|
664 |
+
""", block="block", language="python"),
|
665 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
666 |
+
),
|
667 |
style="""
|
668 |
background-color: #FFFAEA; /* Light yellow background */
|
669 |
padding: 15px;
|
|
|
695 |
H3("TxT360 Implementation"),
|
696 |
Details(
|
697 |
Summary("TxT360 Implementation"),
|
698 |
+
Div(
|
699 |
+
D_code("""
|
700 |
+
words = text.split()
|
701 |
+
word_count = len(words)
|
702 |
+
character_count = sum(len(word) for word in words)
|
703 |
+
...
|
704 |
+
lines = text.split("\n")
|
705 |
+
line_count = len(lines)
|
706 |
+
|
707 |
+
line_counts = Counter(lines)
|
708 |
+
attrs.fraction_of_duplicate_lines = (
|
709 |
+
sum((count - 1) for line, count in line_counts.items() if count > 1) / line_count
|
710 |
+
)
|
711 |
+
attrs.fraction_of_characters_in_duplicate_lines = (
|
712 |
+
sum(sum(len(w) for w in line.split()) * (count - 1) for line, count in
|
713 |
+
line_counts.items() if count > 1) / character_count
|
714 |
+
""", block="block", language="python"),
|
715 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
716 |
+
),
|
717 |
style="""
|
718 |
background-color: #EAFFF1; /* Light green background */
|
719 |
padding: 15px;
|
|
|
723 |
),
|
724 |
Details(
|
725 |
Summary("Sample documents filtered by excessive line repetitions / characters in repeated lines"),
|
726 |
+
Div(
|
727 |
+
DV(
|
728 |
"data/repeat_line_frac.jsonl",
|
729 |
0,
|
730 |
"Sample documents filtered by excessive line repetitions / characters in repeated lines",
|
731 |
+
),
|
732 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
733 |
),
|
734 |
style="""
|
735 |
background-color: #EAFFF1; /* Light green background */
|
|
|
745 |
"""),
|
746 |
Details(
|
747 |
Summary("Implementations from Dolma"),
|
748 |
+
Div(
|
749 |
+
D_code("""
|
750 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
751 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
752 |
+
...
|
753 |
+
all_counts = all_ngram_counts(words)
|
754 |
+
|
755 |
+
count_most_common_ngrams = (2, 3, 4)
|
756 |
+
for n, ngram_counts in all_counts:
|
757 |
+
if not ngram_counts:
|
758 |
+
continue
|
759 |
+
if n in count_most_common_ngrams:
|
760 |
+
most_common_ngram, count = ngram_counts.most_common(1)[0]
|
761 |
+
value = count * sum(len(w) for w in most_common_ngram) / max(character_count, 1)
|
762 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
763 |
+
""", block="block", language="python"),
|
764 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
765 |
+
),
|
766 |
style="""
|
767 |
background-color: #FFFAEA; /* Light yellow background */
|
768 |
padding: 15px;
|
|
|
772 |
),
|
773 |
Details(
|
774 |
Summary("Implementations from RedPajama-V2"),
|
775 |
+
Div(
|
776 |
+
D_code("""
|
777 |
class Base_RPS_Frac_Chars_In_Top_NGram(RPSBase): # noqa
|
778 |
## Base class for calculating the fraction of characters in the top N-gram. This operates on the lower-cased, punctation removed content.
|
779 |
NGRAM_SIZE: int = None
|
|
|
807 |
score = sum(len(w) for w in ngram) * count / total_chars
|
808 |
score = round(score, PRECISION)
|
809 |
return [(0, len(document), score)]
|
810 |
+
""", block="block", language="python"),
|
811 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
812 |
+
),
|
813 |
style="""
|
814 |
background-color: #FFFAEA; /* Light yellow background */
|
815 |
padding: 15px;
|
|
|
820 |
|
821 |
Details(
|
822 |
Summary("Implementations from DataTrove"),
|
823 |
+
Div(
|
824 |
+
D_code("""
|
825 |
+
def get_n_grams(words: list[str], n: int) -> list[str]:
|
826 |
+
return [" ".join(words[i : i + n]) for i in range(len(words) - n + 1)]
|
827 |
+
|
828 |
+
def find_top_duplicate(x: list[str]) -> int:
|
829 |
+
counter = Counter()
|
830 |
+
for element in x:
|
831 |
+
counter[element] += 1
|
832 |
+
top_n_gram = counter.most_common(1)[0]
|
833 |
+
return len(top_n_gram[0]) * top_n_gram[1]
|
834 |
+
...
|
835 |
+
for n, n_frac in self.top_n_grams:
|
836 |
+
n_grams = get_n_grams(words, n)
|
837 |
+
if not n_grams:
|
838 |
+
continue
|
839 |
+
top_char_length = find_top_duplicate(n_grams)
|
840 |
+
if top_char_length / len(text) > n_frac:
|
841 |
+
return False, f"top_n_gram"
|
842 |
+
""", block="block", language="python"),
|
843 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
844 |
+
),
|
845 |
style="""
|
846 |
background-color: #FFFAEA; /* Light yellow background */
|
847 |
padding: 15px;
|
|
|
861 |
"""),
|
862 |
Details(
|
863 |
Summary("TxT360 Implementation"),
|
864 |
+
Div(
|
865 |
+
D_code("""
|
866 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
867 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
868 |
+
...
|
869 |
+
all_counts = all_ngram_counts_new(words)
|
870 |
+
count_most_common_ngrams = (2, 3, 4)
|
871 |
+
for n, ngram_counts in all_counts:
|
872 |
+
if not ngram_counts:
|
873 |
+
continue
|
874 |
+
if n in count_most_common_ngrams:
|
875 |
+
most_common_ngram, count = Counter(ngram_counts).most_common(1)[0]
|
876 |
+
value = count * sum(len(w) for w in most_common_ngram) / character_count
|
877 |
+
attrs.fraction_of_characters_in_most_common_ngram.append((n, value))
|
878 |
+
""", block="block", language="python"),
|
879 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
880 |
+
),
|
881 |
style="""
|
882 |
background-color: #EAFFF1; /* Light green background */
|
883 |
padding: 15px;
|
|
|
887 |
),
|
888 |
Details(
|
889 |
Summary("Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)"),
|
890 |
+
Div(
|
891 |
+
DV(
|
892 |
"data/sample_top_ngram.json",
|
893 |
0,
|
894 |
"Sample documents filtered by the fraction of characters in the most common n-grams (n=2,3,4)",
|
895 |
+
),
|
896 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
897 |
),
|
898 |
style="""
|
899 |
background-color: #EAFFF1; /* Light green background */
|
|
|
910 |
"""),
|
911 |
Details(
|
912 |
Summary("Implementations from Dolma"),
|
913 |
+
Div(
|
914 |
+
D_code("""
|
915 |
+
def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
916 |
+
return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)]
|
917 |
+
...
|
918 |
+
all_counts = all_ngram_counts(words)
|
919 |
+
for n, ngram_counts in all_counts:
|
920 |
+
if not ngram_counts:
|
921 |
+
continue
|
922 |
+
if n in count_most_common_ngrams:
|
923 |
+
...
|
924 |
+
else:
|
925 |
+
ng_char_count = sum(count * sum(len(w) for w in ng) for ng, count in ngram_counts.items())
|
926 |
+
value = sum(
|
927 |
+
count * sum(len(w) for w in ng) for ng, count in ngram_counts.items() if count > 1
|
928 |
+
) / max(ng_char_count, 1)
|
929 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, value))
|
930 |
+
""", block="block", language="python"),
|
931 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
932 |
+
),
|
933 |
style="""
|
934 |
background-color: #FFFAEA; /* Light yellow background */
|
935 |
padding: 15px;
|
|
|
939 |
),
|
940 |
Details(
|
941 |
Summary("Implementations from RedPajama-V2"),
|
942 |
+
Div(
|
943 |
+
D_code("""
|
944 |
+
class Base_RPS_Frac_Chars_In_Dupe_NGrams(RPSBase): # noqa
|
945 |
+
## Base class for calculating the fraction of characters in duplicate word N-grams. This operates on the lower-cased, punctation removed content. The function also ensures that characters in overlapping ngrams are only counted once.
|
946 |
+
NGRAM_SIZE: int = None
|
947 |
+
__slots__ = []
|
948 |
+
|
949 |
+
def __call__(self, document: Document) -> SignalType:
|
950 |
+
if self.NGRAM_SIZE is None:
|
951 |
+
raise NotImplementedError(
|
952 |
+
"NGRAM_SIZE must be set in the subclass"
|
953 |
+
)
|
954 |
+
|
955 |
+
if len(document.normalized_words) < self.NGRAM_SIZE:
|
956 |
+
return [(0, len(document), 0.0)]
|
957 |
+
|
958 |
+
# fetch the ngrams from the document if they exist, otherwise
|
959 |
+
# compute them
|
960 |
+
doc_n_grams = (
|
961 |
+
getattr(document, f"norm_self.NGRAM_SIZEgrams", None)
|
962 |
+
or
|
963 |
+
tuple(form_ngrams(
|
964 |
+
iter(document.normalized_words), self.NGRAM_SIZE
|
965 |
+
))
|
966 |
)
|
967 |
+
|
968 |
+
# keep only ngrams which occur at least twice
|
969 |
+
ngram_dupes =
|
970 |
+
ngram for ngram, count in Counter(doc_n_grams).items() if count > 1
|
971 |
+
|
972 |
+
|
973 |
+
duplicated_grams = np.zeros(len(document.normalized_words), dtype=int)
|
974 |
+
|
975 |
+
i = 0
|
976 |
+
for ngram in doc_n_grams:
|
977 |
+
if ngram in ngram_dupes:
|
978 |
+
duplicated_grams[i: i + self.NGRAM_SIZE] = 1
|
979 |
+
|
980 |
+
i += 1
|
981 |
+
|
982 |
+
word_lengths = np.array(list(map(len, document.normalized_words)))
|
983 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
984 |
+
total_chars = np.sum(word_lengths)
|
985 |
+
|
986 |
+
if total_chars == 0:
|
987 |
+
return [(0, len(document), 0.0)]
|
988 |
+
|
989 |
+
score = float(chars_duped / total_chars)
|
990 |
+
score = round(score, PRECISION)
|
991 |
+
return [(0, len(document), score)]
|
992 |
+
""", block="block", language="python"),
|
993 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
994 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
995 |
style="""
|
996 |
background-color: #FFFAEA; /* Light yellow background */
|
997 |
padding: 15px;
|
|
|
1002 |
|
1003 |
Details(
|
1004 |
Summary("Implementations from DataTrove"),
|
1005 |
+
Div(
|
1006 |
+
D_code("""
|
1007 |
+
def find_all_duplicate(words: list[str], n: int) -> int:
|
1008 |
+
n_words = len(words)
|
1009 |
+
unique = set()
|
1010 |
+
repeated_chars, idx = 0, 0
|
1011 |
+
while idx < n_words - n + 1:
|
1012 |
+
n_gram = "".join(words[idx : idx + n])
|
1013 |
+
if n_gram in unique:
|
1014 |
+
repeated_chars += len(n_gram)
|
1015 |
+
idx += n
|
1016 |
+
else:
|
1017 |
+
unique.add(n_gram)
|
1018 |
+
idx += 1
|
1019 |
+
assert repeated_chars <= len("".join(words))
|
1020 |
+
return repeated_chars
|
1021 |
+
...
|
1022 |
+
for n, n_frac in self.dup_n_grams:
|
1023 |
+
n_duplicates_char = find_all_duplicate(words, n)
|
1024 |
+
if n_duplicates_char / len(text) > n_frac:
|
1025 |
+
return False, f"duplicated_n_grams"
|
1026 |
+
""", block="block", language="python"),
|
1027 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1028 |
+
),
|
1029 |
style="""
|
1030 |
background-color: #FFFAEA; /* Light yellow background */
|
1031 |
padding: 15px;
|
|
|
1050 |
"""),
|
1051 |
Details(
|
1052 |
Summary("TxT360 Implementation"),
|
1053 |
+
Div(
|
1054 |
+
D_code("""
|
1055 |
+
def get_dup_ngram_frac(n, doc_n_grams, text):
|
1056 |
+
# fetch the ngrams from the document if they exist, otherwise compute them
|
1057 |
+
# doc_n_grams = list(zip(*[words[i:] for i in range(n)]))
|
1058 |
+
|
1059 |
+
duplicated_grams = np.zeros(len(text.split()), dtype=int)
|
1060 |
+
|
1061 |
+
unique_ngrams = set()
|
1062 |
+
|
1063 |
+
for i, ngram in enumerate(doc_n_grams):
|
1064 |
+
if ngram in unique_ngrams:
|
1065 |
+
duplicated_grams[i: i + n] = 1
|
1066 |
+
else:
|
1067 |
+
unique_ngrams.add(ngram)
|
1068 |
+
|
1069 |
+
word_lengths = np.array(list(map(len, text.split())))
|
1070 |
+
chars_duped = np.sum(word_lengths * duplicated_grams)
|
1071 |
+
total_chars = np.sum(word_lengths)
|
1072 |
+
|
1073 |
+
return float(chars_duped / total_chars)
|
1074 |
+
|
1075 |
+
def all_ngram_counts_new(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]:
|
1076 |
+
return [(n, list(zip(*[words[i:] for i in range(n)]))) for n in range(2, 11)]
|
1077 |
+
...
|
1078 |
+
all_counts = all_ngram_counts_new(words)
|
1079 |
+
count_most_common_ngrams = (2, 3, 4)
|
1080 |
+
for n, ngram_counts in all_counts:
|
1081 |
+
if not ngram_counts:
|
1082 |
+
continue
|
1083 |
+
if n in count_most_common_ngrams:
|
1084 |
+
...
|
1085 |
else:
|
1086 |
+
score = get_dup_ngram_frac(n, ngram_counts, text)
|
1087 |
+
attrs.fraction_of_characters_in_duplicate_ngrams.append((n, score))
|
1088 |
+
""", block="block", language="python"),
|
1089 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1090 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1091 |
style="""
|
1092 |
background-color: #EAFFF1; /* Light green background */
|
1093 |
padding: 15px;
|
|
|
1120 |
),
|
1121 |
Details(
|
1122 |
Summary("Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)"),
|
1123 |
+
Div(
|
1124 |
+
DV(
|
1125 |
"data/sample_dup_ngram.json",
|
1126 |
0,
|
1127 |
"Sample documents filtered by the fraction of characters in duplicated n-grams (n=5,...,10)",
|
1128 |
+
),
|
1129 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1130 |
),
|
1131 |
style="""
|
1132 |
background-color: #EAFFF1; /* Light green background */
|
|
|
1144 |
"""),
|
1145 |
Details(
|
1146 |
Summary("Ellipsis Symbol Identification Implemetations"),
|
1147 |
+
Div(
|
1148 |
+
P("Dolma: "),
|
1149 |
+
D_code("""
|
1150 |
+
ELLIPSIS_SYMBOLS = ("…")
|
1151 |
+
""", block="block", language="python"),
|
1152 |
+
P("RedPajamaV2: "),
|
1153 |
+
D_code("""
|
1154 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
1155 |
+
""", block="block", language="python"),
|
1156 |
+
P("DataTrove: "),
|
1157 |
+
D_code("""
|
1158 |
+
ELLIPSIS_SYMBOLS = ("...", "…")
|
1159 |
+
""", block="block", language="python"),
|
1160 |
+
P("TxT360: "),
|
1161 |
+
D_code("""
|
1162 |
+
ELLIPSIS_SYMBOLS = ("...", "…", "[...]", "[…]")
|
1163 |
+
""", block="block", language="python"),
|
1164 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1165 |
+
),
|
1166 |
style="""
|
1167 |
background-color: #FFFAEA; /* Light yellow background */
|
1168 |
padding: 15px;
|
|
|
1172 |
),
|
1173 |
Details(
|
1174 |
Summary("Bullet Point Identification Implemetations"),
|
1175 |
+
Div(
|
1176 |
+
P("Dolma: "),
|
1177 |
+
D_code("""
|
1178 |
+
BULLET_POINTS = ("*", "-"
|
1179 |
+
""", block="block", language="python"),
|
1180 |
+
P("RedPajamaV2: "),
|
1181 |
+
D_code("""
|
1182 |
+
BULLET_POINT_SYMBOLS = (
|
1183 |
+
"•", # bullet point
|
1184 |
+
"‣", # triangular bullet point
|
1185 |
+
"▶", # black right pointing triangle
|
1186 |
+
"◀", # black left pointing triangle
|
1187 |
+
"◦", # white bullet point
|
1188 |
+
"■", # black square
|
1189 |
+
"□", # white square
|
1190 |
+
"▪", # black small square
|
1191 |
+
"▫", # white small square
|
1192 |
+
"–", # en dash
|
1193 |
+
)
|
1194 |
+
""", block="block", language="python"),
|
1195 |
+
P("DataTrove: "),
|
1196 |
+
D_code("""
|
1197 |
+
BULLET_POINT_SYMBOLS = ("•" , "-")
|
1198 |
+
""", block="block", language="python"),
|
1199 |
+
P("TxT360: "),
|
1200 |
+
D_code("""
|
1201 |
+
BULLET_POINT_SYMBOLS = (
|
1202 |
+
"•", # • bullet point
|
1203 |
+
"‣", # ‣ triangular bullet point
|
1204 |
+
"▶", # ▶ black right pointing triangle
|
1205 |
+
"◀", # ◀ black left pointing triangle
|
1206 |
+
"◦", # ◦ white bullet point
|
1207 |
+
"■", # ■ black square
|
1208 |
+
"□", # □ white square
|
1209 |
+
"▪", # ▪ black small square
|
1210 |
+
"▫", # ▫ white small square
|
1211 |
+
"-", # - en dash
|
1212 |
+
"–", # – dash
|
1213 |
+
"—", # — zh dash
|
1214 |
+
"*", # * star
|
1215 |
+
)
|
1216 |
+
""", block="block", language="python"),
|
1217 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1218 |
+
),
|
1219 |
style="""
|
1220 |
background-color: #FFFAEA; /* Light yellow background */
|
1221 |
padding: 15px;
|
|
|
1227 |
|
1228 |
Details(
|
1229 |
Summary("Sample documents that are filtered out by line-wise heuristics"),
|
1230 |
+
Div(
|
1231 |
+
DV(
|
1232 |
"data/line_info.json",
|
1233 |
0,
|
1234 |
"Sample documents that are filtered out by line-wise heuristics",
|
1235 |
+
),
|
1236 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1237 |
),
|
1238 |
style="""
|
1239 |
background-color: #EAFFF1; /* Light green background */
|
|
|
1272 |
),
|
1273 |
Details(
|
1274 |
Summary("Implementations from RedPajama-V2"),
|
1275 |
+
Div(
|
1276 |
+
D_code("""
|
1277 |
+
# the normalized content: lowercased and punctuation removed
|
1278 |
+
self._normalized_content = normalize(content)
|
1279 |
+
self._normalized_words = tuple(self._normalized_content.split())
|
1280 |
+
self._num_normalized_words = len(self._normalized_words)
|
1281 |
+
|
1282 |
+
...
|
1283 |
+
def normalize(
|
1284 |
+
text: str,
|
1285 |
+
remove_punct: bool = True,
|
1286 |
+
lowercase: bool = True,
|
1287 |
+
nfd_unicode: bool = True,
|
1288 |
+
white_space: bool = True
|
1289 |
+
) -> str:
|
1290 |
+
#Normalize the text by lowercasing and removing punctuation.
|
1291 |
+
# remove punctuation
|
1292 |
+
if remove_punct:
|
1293 |
+
text = text.translate(TRANSLATION_TABLE_PUNCTUATION)
|
1294 |
+
# lowercase
|
1295 |
+
if lowercase:
|
1296 |
+
text = text.lower()
|
1297 |
+
if white_space:
|
1298 |
+
text = text.strip()
|
1299 |
+
text = re.sub(r"\s+", " ", text)
|
1300 |
+
# NFD unicode normalization
|
1301 |
+
if nfd_unicode:
|
1302 |
+
text = unicodedata.normalize("NFD", text)
|
1303 |
+
return text
|
1304 |
+
""", block="block", language="python"),
|
1305 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1306 |
+
),
|
1307 |
style="""
|
1308 |
background-color: #FFFAEA; /* Light yellow background */
|
1309 |
padding: 15px;
|
|
|
1314 |
|
1315 |
Details(
|
1316 |
Summary("Implementations from DataTrove"),
|
1317 |
+
Div(
|
1318 |
+
D_code("""
|
1319 |
+
words = self.tokenizer.word_tokenize(text)
|
1320 |
+
n_words = len(words)
|
1321 |
+
|
1322 |
+
non_symbol_words = [w for w in words if any(ch not in PUNCTUATION_SET for ch in w)]
|
1323 |
+
n_non_symbol_words_words = len(non_symbol_words)
|
1324 |
+
""", block="block", language="python"),
|
1325 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1326 |
+
),
|
1327 |
style="""
|
1328 |
background-color: #FFFAEA; /* Light yellow background */
|
1329 |
padding: 15px;
|
|
|
1362 |
"""),
|
1363 |
Details(
|
1364 |
Summary("Implementations from RedPajama-V2"),
|
1365 |
+
Div(
|
1366 |
+
D_code("""
|
1367 |
+
class RPS_Doc_Num_Sentences(RPSBase): # noqa
|
1368 |
+
##The number of sentences in the content. This is calculated using the regex r'[^.!?]+[.!?]*'
|
1369 |
+
SENT_PATTERN = re.compile(r'[^.!?]+[.!?]*', flags=re.UNICODE)
|
1370 |
+
|
1371 |
+
__slots__ = ()
|
1372 |
+
|
1373 |
+
def __call__(self, document: Document) -> SignalType:
|
1374 |
+
##count the number of sentences in the content using regex
|
1375 |
+
score = float(len(self.SENT_PATTERN.findall(document.raw_content)))
|
1376 |
+
return [(0, len(document), score)]
|
1377 |
+
""", block="block", language="python"),
|
1378 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1379 |
+
),
|
1380 |
style="""
|
1381 |
background-color: #FFFAEA; /* Light yellow background */
|
1382 |
padding: 15px;
|
|
|
1390 |
"""),
|
1391 |
Details(
|
1392 |
Summary("TxT360 Implementation"),
|
1393 |
+
Div(
|
1394 |
+
D_code("""
|
1395 |
+
from nltk.tokenize import sent_tokenize
|
1396 |
+
...
|
1397 |
+
def count_sentences(text):
|
1398 |
+
sentences = sent_tokenize(text)
|
1399 |
+
return len(sentences)
|
1400 |
+
...
|
1401 |
+
attrs.num_of_sentences = count_sentences(text)
|
1402 |
+
""", block="block", language="python"),
|
1403 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1404 |
+
),
|
1405 |
style="""
|
1406 |
background-color: #EAFFF1; /* Light green background */
|
1407 |
padding: 15px;
|
|
|
1417 |
"""),
|
1418 |
Details(
|
1419 |
Summary("Implementations from Dolma"),
|
1420 |
+
Div(
|
1421 |
+
D_code("""
|
1422 |
+
SYMBOLS = ("#", "…")
|
1423 |
+
...
|
1424 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if any(s in word for s in SYMBOLS)) / max(
|
1425 |
+
word_count, 1
|
1426 |
+
)
|
1427 |
+
""", block="block", language="python"),
|
1428 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1429 |
+
),
|
1430 |
style="""
|
1431 |
background-color: #FFFAEA; /* Light yellow background */
|
1432 |
padding: 15px;
|
|
|
1436 |
),
|
1437 |
Details(
|
1438 |
Summary("Implementations from RedPajama-V2"),
|
1439 |
+
Div(
|
1440 |
+
D_code("""
|
1441 |
+
class RPS_Doc_Symbol_To_Word_Ratio(RPSBase): # noqa
|
1442 |
+
##The ratio of symbols to words in the content. This is analogous to
|
1443 |
+
##the signal used in Gopher. Symbols are defined "#", "...", and "…".
|
1444 |
+
SYMBOLS = ("#", "...", "…")
|
1445 |
+
|
1446 |
+
__slots__ = ()
|
1447 |
+
|
1448 |
+
def __call__(self, document: Document) -> SignalType:
|
1449 |
+
num_words = document.num_raw_words
|
1450 |
+
|
1451 |
+
if num_words == 0:
|
1452 |
+
return [(0, len(document), None)]
|
1453 |
+
|
1454 |
+
# count the number of symbols in the content
|
1455 |
+
num_symbols = float(sum(
|
1456 |
+
document.raw_content.count(x) for x in self.SYMBOLS
|
1457 |
+
))
|
1458 |
+
|
1459 |
+
score = num_symbols / num_words
|
1460 |
+
score = round(score, PRECISION)
|
1461 |
+
return [(0, len(document), score)]
|
1462 |
+
""", block="block", language="python"),
|
1463 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1464 |
+
),
|
1465 |
style="""
|
1466 |
background-color: #FFFAEA; /* Light yellow background */
|
1467 |
padding: 15px;
|
|
|
1472 |
|
1473 |
Details(
|
1474 |
Summary("Implementations from DataTrove"),
|
1475 |
+
Div(
|
1476 |
+
D_code("""
|
1477 |
+
if self.max_symbol_word_ratio and text.count("#") / n_words > self.max_symbol_word_ratio:
|
1478 |
+
return False, "gopher_too_many_hashes"
|
1479 |
+
if self.max_symbol_word_ratio and (text.count("...") + text.count("…")) / n_words > self.max_symbol_word_ratio:
|
1480 |
+
return False, "gopher_too_many_ellipsis"
|
1481 |
+
""", block="block", language="python"),
|
1482 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1483 |
+
),
|
1484 |
style="""
|
1485 |
background-color: #FFFAEA; /* Light yellow background */
|
1486 |
padding: 15px;
|
|
|
1490 |
),
|
1491 |
Details(
|
1492 |
Summary("TxT360 Implementation"),
|
1493 |
+
Div(
|
1494 |
+
D_code("""
|
1495 |
+
SYMBOLS = ("#", "...", "…")
|
1496 |
+
...
|
1497 |
+
symbol_pattern = re.compile("|".join(re.escape(symbol) for symbol in SYMBOLS))
|
1498 |
+
...
|
1499 |
+
attrs.symbol_to_word_ratio = sum(1 for word in words if symbol_pattern.search(word)) / word_count
|
1500 |
+
""", block="block", language="python"),
|
1501 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1502 |
+
),
|
1503 |
style="""
|
1504 |
background-color: #EAFFF1; /* Light green background */
|
1505 |
padding: 15px;
|
|
|
1511 |
H3("Fraction of Alphabetic Words"),
|
1512 |
Details(
|
1513 |
Summary("Implementations from Dolma"),
|
1514 |
+
Div(
|
1515 |
+
D_code("""
|
1516 |
+
attrs.fraction_of_words_with_alpha_character = sum(
|
1517 |
+
1 for word in words if any(c.isalpha() for c in word)
|
1518 |
+
) / max(word_count, 1)
|
1519 |
+
""", block="block", language="python"),
|
1520 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1521 |
+
),
|
1522 |
style="""
|
1523 |
background-color: #FFFAEA; /* Light yellow background */
|
1524 |
padding: 15px;
|
|
|
1528 |
),
|
1529 |
Details(
|
1530 |
Summary("Implementations from RedPajama-V2"),
|
1531 |
+
Div(
|
1532 |
+
D_code("""
|
1533 |
+
class RPS_Doc_Frac_No_Alph_Words(RPSBase): # noqa
|
1534 |
+
ALPH_REGEX = re.compile(r"[a-zA-Z]")
|
1535 |
+
|
1536 |
+
__slots__ = ()
|
1537 |
+
|
1538 |
+
def __call__(self, document: Document) -> SignalType:
|
1539 |
+
num_words = document.num_raw_words
|
1540 |
+
|
1541 |
+
if num_words == 0:
|
1542 |
+
return [(0, len(document), None)]
|
1543 |
+
|
1544 |
+
num_words_with_alpha = float(sum(
|
1545 |
+
int(self.ALPH_REGEX.search(word) is not None)
|
1546 |
+
for word in document.raw_words
|
1547 |
+
))
|
1548 |
+
|
1549 |
+
score = 1.0 - num_words_with_alpha / num_words
|
1550 |
+
score = round(score, PRECISION)
|
1551 |
+
return [(0, len(document), score)]
|
1552 |
+
""", block="block", language="python"),
|
1553 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1554 |
+
),
|
1555 |
style="""
|
1556 |
background-color: #FFFAEA; /* Light yellow background */
|
1557 |
padding: 15px;
|
|
|
1561 |
),
|
1562 |
Details(
|
1563 |
Summary("Implementations from DataTrove"),
|
1564 |
+
Div(
|
1565 |
+
D_code("""
|
1566 |
+
# that 80 % of words in a document contain at least one alphabetic character
|
1567 |
+
if (
|
1568 |
+
self.max_non_alpha_words_ratio
|
1569 |
+
and sum([any((c.isalpha() for c in w)) for w in words]) / n_words < self.max_non_alpha_words_ratio
|
1570 |
+
):
|
1571 |
+
return False, "gopher_below_alpha_threshold"
|
1572 |
+
""", block="block", language="python"),
|
1573 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1574 |
+
),
|
1575 |
style="""
|
1576 |
background-color: #FFFAEA; /* Light yellow background */
|
1577 |
padding: 15px;
|
|
|
1599 |
H3("TxT360 Implementation"),
|
1600 |
Details(
|
1601 |
Summary("Sample documents that are filtered out by statistics-based heuristics"),
|
1602 |
+
Div(
|
1603 |
+
DV(
|
1604 |
"data/sample_doc_stat.json",
|
1605 |
0,
|
1606 |
"Sample documents that are filtered out by statistics-based heuristics",
|
1607 |
+
),
|
1608 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1609 |
),
|
1610 |
style="""
|
1611 |
background-color: #EAFFF1; /* Light green background */
|
|
|
1622 |
|
1623 |
Details(
|
1624 |
Summary("Sample documents containing 'lorem ipsum'"),
|
1625 |
+
Div(
|
1626 |
+
DV("data/lorem_ipsum.json", 0, "Sample documents containing 'lorem ipsum'"),
|
1627 |
+
style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; " # Styling for the DV2 part
|
1628 |
+
),
|
1629 |
style="""
|
1630 |
background-color: #FAEAEA; /* Light pink background */
|
1631 |
padding: 15px;
|