k2-eval-gallery / app.py
mylibrar
Move eval output files to separate repo
5cc465a
import os
import streamlit as st
import json
import tarfile
from huggingface_hub import HfFileSystem
hf_fs = HfFileSystem(token=os.getenv("HF_TOKEN"))
st.set_page_config(layout="wide")
# Disable scroll bar
st.html("<style> .main {overflow: hidden} </style>")
DATASET_ID: str = "LLM360/k2-eval-gallery"
EVAL_DIR: str = os.path.join("datasets", DATASET_ID, "k2-eval-results")
st.title("K2 Evaluation Gallery")
st.markdown("""The K2 gallery allows one to browse the output of various evaluations on intermediate K2 checkpoints, which provides an intuitive understanding on how the model develops and improves over time.""")
def hf_listdir(parent_dir: str):
return (os.path.basename(file) for file in hf_fs.ls(
parent_dir, detail=False
))
with st.sidebar:
html = f"<img src='https://www.llm360.ai/images/logo-highres.png' width='100' /><img src='https://huggingface.co/spaces/LLM360/k2-eval-gallery/raw/main/k2-logo.svg' width='100' />"
st.markdown(html, unsafe_allow_html=True)
metric = st.radio(
"Choose a metric", options=hf_listdir(EVAL_DIR), help="type of evaluation benchmark task"
)
n_shot = st.radio(
"Selece an n-shot number", hf_listdir(os.path.join(EVAL_DIR, metric)),
help="number of examples included in few-shot prompting"
)
col1, col2 = st.columns(2)
def render_column(col_label):
st.header(f"Checkpoint {col_label}")
ckpt = st.select_slider('Select a checkpoint', sorted(hf_listdir(os.path.join(EVAL_DIR, metric, n_shot))), key=col_label + '1', help="checkpoint index from 3 to 360")
st.write(f'Veiwing Evaluation Results for Checkpoint: `{ckpt}`')
suffix, result_file = ".tar.gz", "results.json"
file_list: list = sorted(f_name[:-len(suffix)] for f_name in hf_listdir(os.path.join(EVAL_DIR, metric, n_shot, ckpt)))
if result_file in file_list:
file_list.remove(result_file)
file_list = file_list + [result_file]
file = st.selectbox("Select a file", file_list, key=col_label + '2', help="a list of raw output files from evaluation results")
file += suffix
with tarfile.open(fileobj=hf_fs.open(
os.path.join(EVAL_DIR, metric, n_shot, ckpt, file), "rb"
), mode="r:gz") as tar:
f = tar.extractfile(tar.next())
eval_json = json.load(f)
if isinstance(eval_json, list):
doc_id = st.slider("Select a document id", 0, len(eval_json) - 1, 0, 1, key=col_label + '3', help="index of a specific question/task in current file")
st.json(eval_json[doc_id])
else:
st.json(eval_json)
f.close()
with col1:
render_column('A')
with col2:
render_column('B')