import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from torch.utils.data import DataLoader import itertools import matplotlib.pyplot as plt from custom_resnet import Custom_ResNet import utils as utils model = Custom_ResNet() model.load_state_dict(torch.load("results/custom_resnet_trained.pth", map_location=torch.device('cpu')), strict=False) model.eval() classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') cifar_valid = utils.Cifar10SearchDataset('.', train=False, download=True, transform=utils.augmentation_custom_resnet('Valid')) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) def inference(wants_gradcam, n_gradcam, target_layer_number, transparency, wants_misclassified, n_misclassified, input_img = None, n_top_classes=10): if wants_gradcam: outputs_inference_gc = [] cifar_valid_loader = DataLoader(cifar_valid, batch_size=1, shuffle = True) count_gradcam = 1 for data, target in cifar_valid_loader: data, target = data.to('cpu'), target.to('cpu') target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=data, targets=None) grayscale_cam = grayscale_cam[0, :] org_img = inv_normalize(data).squeeze(0).numpy() org_img = np.transpose(org_img, (1, 2, 0)) visualization = np.array(show_cam_on_image(org_img, grayscale_cam, use_rgb=True, image_weight=transparency)) outputs_inference_gc.append(visualization) count_gradcam += 1 if count_gradcam > n_gradcam: break else: outputs_inference_gc = None if wants_misclassified: outputs_inference_mis = [] cifar_valid_loader = DataLoader(cifar_valid, batch_size=1, shuffle = True) count_mis = 1 for data, target in cifar_valid_loader: data, target = data.to('cpu'), target.to('cpu') outputs = model(data) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) if target.numpy()[0] != prediction.numpy()[0]: count_mis += 1 org_img = inv_normalize(data).squeeze(0).numpy() org_img = np.transpose(org_img, (1, 2, 0)) fig = plt.figure() fig.add_subplot(111) plt.imshow(org_img) plt.title(f'Target: {classes[target.numpy()[0]]}\nPred: {classes[prediction.numpy()[0]]}') plt.axis('off') fig.canvas.draw() fig_img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) fig_img = fig_img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) outputs_inference_mis.append(fig_img) if count_mis > n_misclassified: break else: outputs_inference_mis = None if input_img is not None: transform=utils.augmentation_custom_resnet('Valid') org_img = input_img input_img = transform(image=input_img) input_img = input_img['image'].unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)} confidences = dict(itertools.islice(confidences.items(), n_top_classes)) else: confidences = None return outputs_inference_gc, outputs_inference_mis, confidences title = "CIFAR10 trained on Custom ResNet Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [[None, None, None, None, None, None, 'examples/test_'+str(i)+'.jpg', None] for i in range(10)] demo = gr.Interface(inference, inputs = [gr.Checkbox(False, label='Do you want to see GradCAM outputs?'), gr.Slider(0, 10, value = 0, step=1, label="How many?"), gr.Slider(-2, -1, value = -2, step=1, label="Which target layer?"), gr.Slider(0, 1, value = 0, label="Opacity of GradCAM"), gr.Checkbox(False, label='Do you want to see misclassified images?'), gr.Slider(0, 10, value = 0, step=1, label="How many?"), gr.Image(shape=(32, 32), label="Input image"), gr.Slider(0, 10, value = 0, step=1, label="How many top classes you want to see?") ], outputs = [ gr.Gallery(label="GradCAM Outputs", show_label=True, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto"), gr.Gallery(label="Misclassified Images", show_label=True, elem_id="gallery").style(columns=[2], rows=[2], object_fit="contain", height="auto"), gr.Label(num_top_classes=None) ], title = title, description = description, examples = examples ) demo.launch()