Spaces:
Paused
Paused
File size: 5,258 Bytes
8400add ee95e21 8400add e5327ee 8400add e5327ee 8400add e5327ee 8400add e5327ee 8400add e5327ee 8400add |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
#!/usr/bin/env python
from __future__ import annotations
import os
import string
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL)
matches = pattern.findall(text)
pairs = [(user.strip(), assistant.strip()) for user, assistant in matches]
return pairs
def postprocess_output(output: str) -> str:
if output and output[-1] not in string.punctuation:
output += "."
return output
def chat(image, text, temperature, length_penalty,
repetition_penalty, max_length, min_length, num_beams, top_p,
history_chat):
prompt = " ".join(history_chat)
prompt = f"USER: <image>\n{text}\nASSISTANT:"
outputs = pipe(image, prompt=prompt,
generate_kwargs={"temperature":temperature,
"length_penalty":length_penalty,
"repetition_penalty":repetition_penalty,
"max_length":max_length,
"min_length":min_length,
"num_beams":num_beams,
"top_p":top_p})
output = postprocess_output(outputs[0]["generated_text"])
history_chat.append(output)
chat_val = extract_response_pairs(" ".join(history_chat))
return chat_val, history_chat
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("**LLaVA, one of the greatest multimodal chat models is now available in transformers with 4-bit quantization! ⚡️ **")
gr.Markdown("**Try it in this demo 🤗 **")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text and start chatting 👇")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
history_chat = gr.State(value=[])
with gr.Row():
clear_chat_button = gr.Button("Clear")
chat_button = gr.Button("Submit", variant="primary")
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=512,
step=1,
value=50,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
num_beams = gr.Slider(
label="Number of Beams",
minimum=1,
maximum=10,
step=1,
value=5,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
chat_output = [
chatbot,
history_chat
]
chat_button.click(fn=chat, inputs=[image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
num_beams,
top_p,
history_chat],
outputs=chat_output,
api_name="Chat",
)
chat_inputs = [
image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
num_beams,
top_p,
history_chat
]
text_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_output
).success(
fn=lambda: "",
outputs=chat_inputs,
queue=False,
api_name=False,
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch() |