llava-4bit / app.py
LPDoctor's picture
Update app.py
4f85e9c verified
import os
import string
import copy
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
import time
DESCRIPTION = "YOLO"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
turns = re.split(r'(USER:|ASSISTANT:)', text)[1:]
turns = [turn.strip() for turn in turns if turn.strip()]
conv_list = []
for i in range(0, len(turns[1::2]), 2):
if i + 1 < len(turns[1::2]):
conv_list.append([turns[1::2][i].lstrip(":"), turns[1::2][i + 1].lstrip(":")])
return conv_list
def add_text(history, text):
history = history.append([text, None])
return history, text
def infer(image, prompt,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
print("类型是:",type(image))
print(temperature, length_penalty, repetition_penalty, max_length, min_length, top_p)
outputs = pipe(images=image, prompt=prompt,
generate_kwargs={"temperature":temperature,
"length_penalty":length_penalty,
"repetition_penalty":repetition_penalty,
"max_length":max_length,
"min_length":min_length,
"top_p":top_p})
inference_output = outputs[0]["generated_text"]
return inference_output
def bot(history_chat, text_input, image,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p):
if text_input == "":
gr.Warning("Please input text")
if image==None:
gr.Warning("Please input image or wait for image to be uploaded before clicking submit.")
chat_history = " ".join(history_chat) # history as a str to be passed to model
chat_history = chat_history + f"USER: <image>\n{text_input}\nASSISTANT:" # add text input for prompting
inference_result = infer(image, chat_history,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p)
# return inference and parse for new history
chat_val = extract_response_pairs(inference_result)
# create history list for yielding the last inference response
chat_state_list = copy.deepcopy(chat_val)
chat_state_list[-1][1] = "" # empty last response
# add characters iteratively
for character in chat_val[-1][1]:
chat_state_list[-1][1] += character
time.sleep(0.05)
# yield history but with last response being streamed
yield chat_state_list
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("""## LLaVA, one of the greatest multimodal chat models is now available in Transformers with 4-bit quantization! ⚡️
See the docs here: https://huggingface.co/docs/transformers/main/en/model_doc/llava.""")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text and start chatting 👇")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
history_chat = gr.State(value=[])
with gr.Accordion(label="Advanced settings", open=False):
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=500,
step=1,
value=200,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=100,
step=1,
value=1,
)
top_p = gr.Slider(
label="Top P",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=0.9,
)
chat_output = [
chatbot,
history_chat
]
chat_inputs = [
image,
text_input,
temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p,
history_chat
]
with gr.Row():
clear_chat_button = gr.Button("Clear")
cancel_btn = gr.Button("Stop Generation")
chat_button = gr.Button("Submit", variant="primary")
chat_event1 = chat_button.click(add_text, [chatbot, text_input], [chatbot, text_input]).then(bot, [chatbot, text_input,
image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p], chatbot)
chat_event2 = text_input.submit(
add_text,
[chatbot, text_input],
[chatbot, text_input]
).then(
fn=bot,
inputs=[chatbot, text_input, image, temperature,
length_penalty,
repetition_penalty,
max_length,
min_length,
top_p],
outputs=chatbot
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False)
cancel_btn.click(
None, [], [],
cancels=[chat_event1, chat_event2]
)
examples = [["./examples/baklava.png", "How to make this pastry?"],["./examples/bee.png","Describe this image."]]
gr.Examples(examples=examples, inputs=[image, text_input, chat_inputs])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)