File size: 8,425 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import os
import numpy as np
import torch
import nvdiffrast.torch as dr

from src.models.geometry.rep_3d import util

######################################################################################
# Smooth pooling / mip computation with linear gradient upscaling
######################################################################################

class texture2d_mip(torch.autograd.Function):
    @staticmethod
    def forward(ctx, texture):
        return util.avg_pool_nhwc(texture, (2,2))

    @staticmethod
    def backward(ctx, dout):
        gy, gx = torch.meshgrid(torch.linspace(0.0 + 0.25 / dout.shape[1], 1.0 - 0.25 / dout.shape[1], dout.shape[1]*2, device="cuda"), 
                                torch.linspace(0.0 + 0.25 / dout.shape[2], 1.0 - 0.25 / dout.shape[2], dout.shape[2]*2, device="cuda"),
                                indexing='ij')
        uv = torch.stack((gx, gy), dim=-1)
        return dr.texture(dout * 0.25, uv[None, ...].contiguous(), filter_mode='linear', boundary_mode='clamp')

########################################################################################################
# Simple texture class. A texture can be either 
# - A 3D tensor (using auto mipmaps)
# - A list of 3D tensors (full custom mip hierarchy)
########################################################################################################

class Texture2D(torch.nn.Module):
     # Initializes a texture from image data.
     # Input can be constant value (1D array) or texture (3D array) or mip hierarchy (list of 3d arrays)
    def __init__(self, init, min_max=None):
        super(Texture2D, self).__init__()

        if isinstance(init, np.ndarray):
            init = torch.tensor(init, dtype=torch.float32, device='cuda')
        elif isinstance(init, list) and len(init) == 1:
            init = init[0]

        if isinstance(init, list):
            self.data = list(torch.nn.Parameter(mip.clone().detach(), requires_grad=True) for mip in init)
        elif len(init.shape) == 4:
            self.data = torch.nn.Parameter(init.clone().detach(), requires_grad=True)
        elif len(init.shape) == 3:
            self.data = torch.nn.Parameter(init[None, ...].clone().detach(), requires_grad=True)
        elif len(init.shape) == 2:
            self.data = torch.nn.Parameter(init[None, :, :, None].repeat(1,1,1,3).clone().detach(), requires_grad=True)
            # breakpoint()
        elif len(init.shape) == 1:
            self.data = torch.nn.Parameter(init[None, None, None, :].clone().detach(), requires_grad=True) # Convert constant to 1x1 tensor
        else:
            assert False, "Invalid texture object"

        self.min_max = min_max

    # Filtered (trilinear) sample texture at a given location
    def sample(self, texc, texc_deriv, filter_mode='linear-mipmap-linear'):
        if isinstance(self.data, list):
            out = dr.texture(self.data[0], texc, texc_deriv, mip=self.data[1:], filter_mode=filter_mode)
        else:
            if self.data.shape[1] > 1 and self.data.shape[2] > 1:
                mips = [self.data]
                while mips[-1].shape[1] > 1 and mips[-1].shape[2] > 1:
                    mips += [texture2d_mip.apply(mips[-1])]
                out = dr.texture(mips[0], texc, texc_deriv, mip=mips[1:], filter_mode=filter_mode)
            else:
                out = dr.texture(self.data, texc, texc_deriv, filter_mode=filter_mode)
        return out

    def getRes(self):
        return self.getMips()[0].shape[1:3]

    def getChannels(self):
        return self.getMips()[0].shape[3]

    def getMips(self):
        if isinstance(self.data, list):
            return self.data
        else:
            return [self.data]

    # In-place clamp with no derivative to make sure values are in valid range after training
    def clamp_(self):
        if self.min_max is not None:
            for mip in self.getMips():
                for i in range(mip.shape[-1]):
                    mip[..., i].clamp_(min=self.min_max[0][i], max=self.min_max[1][i])

    # In-place clamp with no derivative to make sure values are in valid range after training
    def normalize_(self):
        with torch.no_grad():
            for mip in self.getMips():
                mip = util.safe_normalize(mip)

########################################################################################################
# Helper function to create a trainable texture from a regular texture. The trainable weights are 
# initialized with texture data as an initial guess
########################################################################################################

def create_trainable(init, res=None, auto_mipmaps=True, min_max=None):
    with torch.no_grad():
        if isinstance(init, Texture2D):
            assert isinstance(init.data, torch.Tensor)
            min_max = init.min_max if min_max is None else min_max
            init = init.data
        elif isinstance(init, np.ndarray):
            init = torch.tensor(init, dtype=torch.float32, device='cuda')

        # Pad to NHWC if needed
        if len(init.shape) == 1: # Extend constant to NHWC tensor
            init = init[None, None, None, :]
        elif len(init.shape) == 3:
            init = init[None, ...]

        # Scale input to desired resolution.
        if res is not None:
            init = util.scale_img_nhwc(init, res)

        # Genreate custom mipchain
        if not auto_mipmaps:
            mip_chain = [init.clone().detach().requires_grad_(True)]
            while mip_chain[-1].shape[1] > 1 or mip_chain[-1].shape[2] > 1:
                new_size = [max(mip_chain[-1].shape[1] // 2, 1), max(mip_chain[-1].shape[2] // 2, 1)]
                mip_chain += [util.scale_img_nhwc(mip_chain[-1], new_size)]
            return Texture2D(mip_chain, min_max=min_max)
        else:
            return Texture2D(init, min_max=min_max)

########################################################################################################
# Convert texture to and from SRGB
########################################################################################################

def srgb_to_rgb(texture):
    return Texture2D(list(util.srgb_to_rgb(mip) for mip in texture.getMips()))

def rgb_to_srgb(texture):
    return Texture2D(list(util.rgb_to_srgb(mip) for mip in texture.getMips()))

########################################################################################################
# Utility functions for loading / storing a texture
########################################################################################################

def _load_mip2D(fn, lambda_fn=None, channels=None):
    imgdata = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')
    if channels is not None:
        imgdata = imgdata[..., 0:channels]
    if lambda_fn is not None:
        imgdata = lambda_fn(imgdata)
    return imgdata.detach().clone()

def load_texture2D(fn, lambda_fn=None, channels=None):
    base, ext = os.path.splitext(fn)
    if os.path.exists(base + "_0" + ext):
        mips = []
        while os.path.exists(base + ("_%d" % len(mips)) + ext):
            mips += [_load_mip2D(base + ("_%d" % len(mips)) + ext, lambda_fn, channels)]
        return Texture2D(mips)
    else:
        return Texture2D(_load_mip2D(fn, lambda_fn, channels))

def _save_mip2D(fn, mip, mipidx, lambda_fn):
    if lambda_fn is not None:
        data = lambda_fn(mip).detach().cpu().numpy()
    else:
        data = mip.detach().cpu().numpy()

    if mipidx is None:
        util.save_image(fn, data)
    else:
        base, ext = os.path.splitext(fn)
        util.save_image(base + ("_%d" % mipidx) + ext, data)

def save_texture2D(fn, tex, lambda_fn=None):
    if isinstance(tex.data, list):
        for i, mip in enumerate(tex.data):
            _save_mip2D(fn, mip[0,...], i, lambda_fn)
    else:
        _save_mip2D(fn, tex.data[0,...], None, lambda_fn)