File size: 8,348 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
from src.models.geometry.rep_3d import util
from . import texture
######################################################################################
# Wrapper to make materials behave like a python dict, but register textures as
# torch.nn.Module parameters.
######################################################################################
class Material(torch.nn.Module):
def __init__(self, mat_dict):
super(Material, self).__init__()
self.mat_keys = set()
for key in mat_dict.keys():
self.mat_keys.add(key)
self[key] = mat_dict[key]
def __contains__(self, key):
return hasattr(self, key)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, val):
self.mat_keys.add(key)
setattr(self, key, val)
def __delitem__(self, key):
self.mat_keys.remove(key)
delattr(self, key)
def keys(self):
return self.mat_keys
######################################################################################
# .mtl material format loading / storing
######################################################################################
@torch.no_grad()
def load_mtl(fn, clear_ks=True):
import re
mtl_path = os.path.dirname(fn)
# Read file
with open(fn, 'r') as f:
lines = f.readlines()
# Parse materials
materials = []
for line in lines:
split_line = re.split(' +|\t+|\n+', line.strip())
prefix = split_line[0].lower()
data = split_line[1:]
if 'newmtl' in prefix:
material = Material({'name' : data[0]})
materials += [material]
elif materials:
if 'map_d' in prefix:
# 设置透明度为1.0,即完全不透明
material['d'] = torch.tensor(1.0, dtype=torch.float32, device='cuda')
elif 'map_ke' in prefix:
# 设置自发光为0
material['Ke'] = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda')
elif 'bsdf' in prefix or 'map_kd' in prefix or 'map_ks' in prefix or 'bump' in prefix:
material[prefix] = data[0]
else:
material[prefix] = torch.tensor(tuple(float(d) for d in data), dtype=torch.float32, device='cuda')
# Convert everything to textures. Our code expects 'kd' and 'ks' to be texture maps. So replace constants with 1x1 maps
for mat in materials:
if not 'bsdf' in mat:
mat['bsdf'] = 'pbr'
if 'map_kd' in mat:
mat['kd'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_kd']))
else:
mat['kd'] = texture.Texture2D(mat['kd'])
if 'map_ks' in mat:
mat['ks'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_ks']), channels=3)
else:
mat['ks'] = texture.Texture2D(mat['ks'])
if 'bump' in mat:
mat['normal'] = texture.load_texture2D(os.path.join(mtl_path, mat['bump']), lambda_fn=lambda x: x * 2 - 1, channels=3)
# Convert Kd from sRGB to linear RGB
mat['kd'] = texture.srgb_to_rgb(mat['kd'])
if clear_ks:
# Override ORM occlusion (red) channel by zeros. We hijack this channel
for mip in mat['ks'].getMips():
mip[..., 0] = 0.0
return materials
@torch.no_grad()
def save_mtl(fn, material):
folder = os.path.dirname(fn)
with open(fn, "w") as f:
f.write('newmtl defaultMat\n')
if material is not None:
f.write('bsdf %s\n' % material['bsdf'])
if 'kd' in material.keys():
f.write('map_Kd texture_kd.png\n')
texture.save_texture2D(os.path.join(folder, 'texture_kd.png'), texture.rgb_to_srgb(material['kd']))
if 'ks' in material.keys():
f.write('map_Ks texture_ks.png\n')
texture.save_texture2D(os.path.join(folder, 'texture_ks.png'), material['ks'])
if 'normal' in material.keys():
f.write('bump texture_n.png\n')
texture.save_texture2D(os.path.join(folder, 'texture_n.png'), material['normal'], lambda_fn=lambda x:(util.safe_normalize(x)+1)*0.5)
else:
f.write('Kd 1 1 1\n')
f.write('Ks 0 0 0\n')
f.write('Ka 0 0 0\n')
f.write('Tf 1 1 1\n')
f.write('Ni 1\n')
f.write('Ns 0\n')
######################################################################################
# Merge multiple materials into a single uber-material
######################################################################################
def _upscale_replicate(x, full_res):
x = x.permute(0, 3, 1, 2)
x = torch.nn.functional.pad(x, (0, full_res[1] - x.shape[3], 0, full_res[0] - x.shape[2]), 'replicate')
return x.permute(0, 2, 3, 1).contiguous()
def merge_materials(materials, texcoords, tfaces, mfaces):
assert len(materials) > 0
for mat in materials:
assert mat['bsdf'] == materials[0]['bsdf'], "All materials must have the same BSDF (uber shader)"
assert ('normal' in mat) is ('normal' in materials[0]), "All materials must have either normal map enabled or disabled"
uber_material = Material({
'name' : 'uber_material',
'bsdf' : materials[0]['bsdf'],
})
textures = ['kd', 'ks', 'normal']
# Find maximum texture resolution across all materials and textures
max_res = None
for mat in materials:
for tex in textures:
tex_res = np.array(mat[tex].getRes()) if tex in mat else np.array([1, 1])
max_res = np.maximum(max_res, tex_res) if max_res is not None else tex_res
# Compute size of compund texture and round up to nearest PoT
full_res = 2**np.ceil(np.log2(max_res * np.array([1, len(materials)]))).astype(int)
# Normalize texture resolution across all materials & combine into a single large texture
for tex in textures:
if tex in materials[0]:
# breakpoint()
tex_data_list = []
for mat in materials:
if tex in mat:
scaled_tex = util.scale_img_nhwc(mat[tex].data, tuple(max_res))
if scaled_tex.shape[-1] != 3:
scaled_tex = scaled_tex[:, :, :, :3]
tex_data_list.append(scaled_tex)
# tex_data = torch.cat(tuple(util.scale_img_nhwc(mat[tex].data, tuple(max_res)) for mat in materials), dim=2) # Lay out all textures horizontally, NHWC so dim2 is x
tex_data = torch.cat(tuple(tex_data_list), dim=2) # 将所有纹理水平排列,NHWC 的 dim2 是 x 轴
tex_data = _upscale_replicate(tex_data, full_res)
uber_material[tex] = texture.Texture2D(tex_data)
# Compute scaling values for used / unused texture area
s_coeff = [full_res[0] / max_res[0], full_res[1] / max_res[1]]
# Recompute texture coordinates to cooincide with new composite texture
new_tverts = {}
new_tverts_data = []
for fi in range(len(tfaces)):
matIdx = mfaces[fi]
for vi in range(3):
ti = tfaces[fi][vi]
if not (ti in new_tverts):
new_tverts[ti] = {}
if not (matIdx in new_tverts[ti]): # create new vertex
new_tverts_data.append([(matIdx + texcoords[ti][0]) / s_coeff[1], texcoords[ti][1] / s_coeff[0]]) # Offset texture coodrinate (x direction) by material id & scale to local space. Note, texcoords are (u,v) but texture is stored (w,h) so the indexes swap here
new_tverts[ti][matIdx] = len(new_tverts_data) - 1
tfaces[fi][vi] = new_tverts[ti][matIdx] # reindex vertex
return uber_material, new_tverts_data, tfaces
|