File size: 8,348 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import os
import numpy as np
import torch

from src.models.geometry.rep_3d import util
from . import texture

######################################################################################
# Wrapper to make materials behave like a python dict, but register textures as 
# torch.nn.Module parameters.
######################################################################################
class Material(torch.nn.Module):
    def __init__(self, mat_dict):
        super(Material, self).__init__()
        self.mat_keys = set()
        for key in mat_dict.keys():
            self.mat_keys.add(key)
            self[key] = mat_dict[key]

    def __contains__(self, key):
        return hasattr(self, key)

    def __getitem__(self, key):
        return getattr(self, key)
    
    def __setitem__(self, key, val):
        self.mat_keys.add(key)
        setattr(self, key, val)

    def __delitem__(self, key):
        self.mat_keys.remove(key)
        delattr(self, key)

    def keys(self):
        return self.mat_keys

######################################################################################
# .mtl material format loading / storing
######################################################################################
@torch.no_grad()
def load_mtl(fn, clear_ks=True):
    import re
    mtl_path = os.path.dirname(fn)

    # Read file
    with open(fn, 'r') as f:
        lines = f.readlines()

    # Parse materials
    materials = []
    for line in lines:
        split_line = re.split(' +|\t+|\n+', line.strip())
        prefix = split_line[0].lower()
        data = split_line[1:]
        if 'newmtl' in prefix:
            material = Material({'name' : data[0]})
            materials += [material]
        elif materials:
            if 'map_d' in prefix:
                # 设置透明度为1.0,即完全不透明
                material['d'] = torch.tensor(1.0, dtype=torch.float32, device='cuda')
            elif 'map_ke' in prefix:
                # 设置自发光为0
                material['Ke'] = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda')
            elif 'bsdf' in prefix or 'map_kd' in prefix or 'map_ks' in prefix or 'bump' in prefix:
                material[prefix] = data[0]
            else:
                material[prefix] = torch.tensor(tuple(float(d) for d in data), dtype=torch.float32, device='cuda')

    # Convert everything to textures. Our code expects 'kd' and 'ks' to be texture maps. So replace constants with 1x1 maps
    for mat in materials:
        if not 'bsdf' in mat:
            mat['bsdf'] = 'pbr'

        if 'map_kd' in mat:
            mat['kd'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_kd']))
        else:
            mat['kd'] = texture.Texture2D(mat['kd'])
        
        if 'map_ks' in mat:
            mat['ks'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_ks']), channels=3)
        else:
            mat['ks'] = texture.Texture2D(mat['ks'])

        if 'bump' in mat:
            mat['normal'] = texture.load_texture2D(os.path.join(mtl_path, mat['bump']), lambda_fn=lambda x: x * 2 - 1, channels=3)

        # Convert Kd from sRGB to linear RGB
        mat['kd'] = texture.srgb_to_rgb(mat['kd'])

        if clear_ks:
            # Override ORM occlusion (red) channel by zeros. We hijack this channel
            for mip in mat['ks'].getMips():
                mip[..., 0] = 0.0 

    return materials

@torch.no_grad()
def save_mtl(fn, material):
    folder = os.path.dirname(fn)
    with open(fn, "w") as f:
        f.write('newmtl defaultMat\n')
        if material is not None:
            f.write('bsdf   %s\n' % material['bsdf'])
            if 'kd' in material.keys():
                f.write('map_Kd texture_kd.png\n')
                texture.save_texture2D(os.path.join(folder, 'texture_kd.png'), texture.rgb_to_srgb(material['kd']))
            if 'ks' in material.keys():
                f.write('map_Ks texture_ks.png\n')
                texture.save_texture2D(os.path.join(folder, 'texture_ks.png'), material['ks'])
            if 'normal' in material.keys():
                f.write('bump texture_n.png\n')
                texture.save_texture2D(os.path.join(folder, 'texture_n.png'), material['normal'], lambda_fn=lambda x:(util.safe_normalize(x)+1)*0.5)
        else:
            f.write('Kd 1 1 1\n')
            f.write('Ks 0 0 0\n')
            f.write('Ka 0 0 0\n')
            f.write('Tf 1 1 1\n')
            f.write('Ni 1\n')
            f.write('Ns 0\n')

######################################################################################
# Merge multiple materials into a single uber-material
######################################################################################

def _upscale_replicate(x, full_res):
    x = x.permute(0, 3, 1, 2)
    x = torch.nn.functional.pad(x, (0, full_res[1] - x.shape[3], 0, full_res[0] - x.shape[2]), 'replicate')
    return x.permute(0, 2, 3, 1).contiguous()

def merge_materials(materials, texcoords, tfaces, mfaces):
    assert len(materials) > 0
    for mat in materials:
        assert mat['bsdf'] == materials[0]['bsdf'], "All materials must have the same BSDF (uber shader)"
        assert ('normal' in mat) is ('normal' in materials[0]), "All materials must have either normal map enabled or disabled"

    uber_material = Material({
        'name' : 'uber_material',
        'bsdf' : materials[0]['bsdf'],
    })

    textures = ['kd', 'ks', 'normal']

    # Find maximum texture resolution across all materials and textures
    max_res = None
    for mat in materials:
        for tex in textures:
            tex_res = np.array(mat[tex].getRes()) if tex in mat else np.array([1, 1])
            max_res = np.maximum(max_res, tex_res) if max_res is not None else tex_res
    
    # Compute size of compund texture and round up to nearest PoT
    full_res = 2**np.ceil(np.log2(max_res * np.array([1, len(materials)]))).astype(int)

    # Normalize texture resolution across all materials & combine into a single large texture
    for tex in textures:
        if tex in materials[0]:
            # breakpoint()
            tex_data_list = []
            for mat in materials:
                if tex in mat:  
                    scaled_tex = util.scale_img_nhwc(mat[tex].data, tuple(max_res))
                    if scaled_tex.shape[-1] != 3:
                        scaled_tex = scaled_tex[:, :, :, :3]
                    tex_data_list.append(scaled_tex)
            # tex_data = torch.cat(tuple(util.scale_img_nhwc(mat[tex].data, tuple(max_res)) for mat in materials), dim=2) # Lay out all textures horizontally, NHWC so dim2 is x
            tex_data = torch.cat(tuple(tex_data_list), dim=2)  # 将所有纹理水平排列,NHWC 的 dim2 是 x 轴
            tex_data = _upscale_replicate(tex_data, full_res)
            uber_material[tex] = texture.Texture2D(tex_data)

    # Compute scaling values for used / unused texture area
    s_coeff = [full_res[0] / max_res[0], full_res[1] / max_res[1]]

    # Recompute texture coordinates to cooincide with new composite texture
    new_tverts = {}
    new_tverts_data = []
    for fi in range(len(tfaces)):
        matIdx = mfaces[fi]
        for vi in range(3):
            ti = tfaces[fi][vi]
            if not (ti in new_tverts):
                new_tverts[ti] = {}
            if not (matIdx in new_tverts[ti]): # create new vertex
                new_tverts_data.append([(matIdx + texcoords[ti][0]) / s_coeff[1], texcoords[ti][1] / s_coeff[0]]) # Offset texture coodrinate (x direction) by material id & scale to local space. Note, texcoords are (u,v) but texture is stored (w,h) so the indexes swap here
                new_tverts[ti][matIdx] = len(new_tverts_data) - 1
            tfaces[fi][vi] = new_tverts[ti][matIdx] # reindex vertex

    return uber_material, new_tverts_data, tfaces