File size: 13,179 Bytes
2fe3da0 8f4e45e 2fe3da0 8185e57 2fe3da0 57d83be 2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
import os
from . import Renderer
from . import util
from . import renderutils as ru
_FG_LUT = None
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] += os.pathsep + os.path.join(os.environ["CUDA_HOME"], "bin")
os.environ["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH", "") + os.pathsep + os.path.join(os.environ["CUDA_HOME"], "lib64")
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(
attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
def xfm_points(points, matrix, use_python=True):
'''Transform points.
Args:
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
use_python: Use PyTorch's torch.matmul (for validation)
Returns:
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
'''
out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
return out
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def compute_vertex_normal(v_pos, t_pos_idx):
i0 = t_pos_idx[:, 0]
i1 = t_pos_idx[:, 1]
i2 = t_pos_idx[:, 2]
v0 = v_pos[i0, :]
v1 = v_pos[i1, :]
v2 = v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
class NeuralRender(Renderer):
def __init__(self, device='cuda', camera_model=None):
super(NeuralRender, self).__init__()
self.device = device
# self.ctx = dr.RasterizeCudaContext(device=device)
self.ctx = dr.RasterizeCudaContext().cuda()
self.projection_mtx = None
self.camera = camera_model
# ==============================================================================================
# pixel shader
# ==============================================================================================
# def shade(
# self,
# gb_pos,
# gb_geometric_normal,
# gb_normal,
# gb_tangent,
# gb_texc,
# gb_texc_deriv,
# view_pos,
# ):
# ################################################################################
# # Texture lookups
# ################################################################################
# breakpoint()
# # Separate kd into alpha and color, default alpha = 1
# alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1])
# kd = kd[..., 0:3]
# ################################################################################
# # Normal perturbation & normal bend
# ################################################################################
# perturbed_nrm = None
# gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)
# ################################################################################
# # Evaluate BSDF
# ################################################################################
# assert 'bsdf' in material or bsdf is not None, "Material must specify a BSDF type"
# bsdf = material['bsdf'] if bsdf is None else bsdf
# if bsdf == 'pbr':
# if isinstance(lgt, light.EnvironmentLight):
# shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True)
# else:
# assert False, "Invalid light type"
# elif bsdf == 'diffuse':
# if isinstance(lgt, light.EnvironmentLight):
# shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False)
# else:
# assert False, "Invalid light type"
# elif bsdf == 'normal':
# shaded_col = (gb_normal + 1.0)*0.5
# elif bsdf == 'tangent':
# shaded_col = (gb_tangent + 1.0)*0.5
# elif bsdf == 'kd':
# shaded_col = kd
# elif bsdf == 'ks':
# shaded_col = ks
# else:
# assert False, "Invalid BSDF '%s'" % bsdf
# # Return multiple buffers
# buffers = {
# 'shaded' : torch.cat((shaded_col, alpha), dim=-1),
# 'kd_grad' : torch.cat((kd_grad, alpha), dim=-1),
# 'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1)
# }
# return buffers
# ==============================================================================================
# Render a depth slice of the mesh (scene), some limitations:
# - Single mesh
# - Single light
# - Single material
# ==============================================================================================
def render_layer(
self,
rast,
rast_deriv,
mesh,
view_pos,
resolution,
spp,
msaa
):
# Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
rast_out_s = rast
rast_out_deriv_s = rast_deriv
################################################################################
# Interpolate attributes
################################################################################
# Interpolate world space position
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int())
# Compute geometric normals. We need those because of bent normals trick (for bump mapping)
v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :]
v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :]
v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :]
face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0))
face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int())
# Compute tangent space
assert mesh.v_nrm is not None and mesh.v_tng is not None
gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int())
gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents
# Texture coordinate
# assert mesh.v_tex is not None
# gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s)
perturbed_nrm = None
gb_normal = ru.prepare_shading_normal(gb_pos, view_pos[:,None,None,:], perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)
return gb_pos, gb_normal
def render_mesh(
self,
mesh_v_pos_bxnx3,
mesh_t_pos_idx_fx3,
mesh,
camera_mv_bx4x4,
camera_pos,
mesh_v_feat_bxnxd,
resolution=256,
spp=1,
device='cuda',
hierarchical_mask=False
):
assert not hierarchical_mask
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
v_pos_clip = self.camera.project(v_pos) # Projection in the camera
# view_pos = torch.linalg.inv(mtx_in)[:, :3, 3]
view_pos = camera_pos
v_nrm = mesh.v_nrm #compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
# Render the image,
# Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
num_layers = 1
mask_pyramid = None
assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos [org_pos, clip space pose for rasterization]
layers = []
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh.t_pos_idx.int(), [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_pos, gb_normal = self.render_layer(rast, db, mesh, view_pos, resolution, spp, msaa=False)
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
hard_mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(
hard_mask.clone().contiguous(), rast, v_pos_clip,
mesh_t_pos_idx_fx3)
depth = gb_feat[..., -2:-1]
ori_mesh_feature = gb_feat[..., :-4]
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
# normal = F.normalize(normal, dim=-1)
# normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal, gb_normal
def render_mesh_light(
self,
mesh_v_pos_bxnx3,
mesh_t_pos_idx_fx3,
mesh,
camera_mv_bx4x4,
mesh_v_feat_bxnxd,
resolution=256,
spp=1,
device='cuda',
hierarchical_mask=False
):
assert not hierarchical_mask
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
v_pos_clip = self.camera.project(v_pos) # Projection in the camera
v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
# Render the image,
# Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
num_layers = 1
mask_pyramid = None
assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
hard_mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(
hard_mask.clone().contiguous(), rast, v_pos_clip,
mesh_t_pos_idx_fx3)
depth = gb_feat[..., -2:-1]
ori_mesh_feature = gb_feat[..., :-4]
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
normal = F.normalize(normal, dim=-1)
normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal
|