File size: 26,451 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
/*
* Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
* property and proprietary rights in and to this material, related
* documentation and any modifications thereto. Any use, reproduction,
* disclosure or distribution of this material and related documentation
* without an express license agreement from NVIDIA CORPORATION or
* its affiliates is strictly prohibited.
*/
#include "common.h"
#include "bsdf.h"
#define SPECULAR_EPSILON 1e-4f
//------------------------------------------------------------------------
// Lambert functions
__device__ inline float fwdLambert(const vec3f nrm, const vec3f wi)
{
return max(dot(nrm, wi) / M_PI, 0.0f);
}
__device__ inline void bwdLambert(const vec3f nrm, const vec3f wi, vec3f& d_nrm, vec3f& d_wi, const float d_out)
{
if (dot(nrm, wi) > 0.0f)
bwdDot(nrm, wi, d_nrm, d_wi, d_out / M_PI);
}
//------------------------------------------------------------------------
// Fresnel Schlick
__device__ inline float fwdFresnelSchlick(const float f0, const float f90, const float cosTheta)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float scale = powf(1.0f - _cosTheta, 5.0f);
return f0 * (1.0f - scale) + f90 * scale;
}
__device__ inline void bwdFresnelSchlick(const float f0, const float f90, const float cosTheta, float& d_f0, float& d_f90, float& d_cosTheta, const float d_out)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float scale = pow(max(1.0f - _cosTheta, 0.0f), 5.0f);
d_f0 += d_out * (1.0 - scale);
d_f90 += d_out * scale;
if (cosTheta >= SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON)
{
d_cosTheta += d_out * (f90 - f0) * -5.0f * powf(1.0f - cosTheta, 4.0f);
}
}
__device__ inline vec3f fwdFresnelSchlick(const vec3f f0, const vec3f f90, const float cosTheta)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float scale = powf(1.0f - _cosTheta, 5.0f);
return f0 * (1.0f - scale) + f90 * scale;
}
__device__ inline void bwdFresnelSchlick(const vec3f f0, const vec3f f90, const float cosTheta, vec3f& d_f0, vec3f& d_f90, float& d_cosTheta, const vec3f d_out)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float scale = pow(max(1.0f - _cosTheta, 0.0f), 5.0f);
d_f0 += d_out * (1.0 - scale);
d_f90 += d_out * scale;
if (cosTheta >= SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON)
{
d_cosTheta += sum(d_out * (f90 - f0) * -5.0f * powf(1.0f - cosTheta, 4.0f));
}
}
//------------------------------------------------------------------------
// Frostbite diffuse
__device__ inline float fwdFrostbiteDiffuse(const vec3f nrm, const vec3f wi, const vec3f wo, float linearRoughness)
{
float wiDotN = dot(wi, nrm);
float woDotN = dot(wo, nrm);
if (wiDotN > 0.0f && woDotN > 0.0f)
{
vec3f h = safeNormalize(wo + wi);
float wiDotH = dot(wi, h);
float energyBias = 0.5f * linearRoughness;
float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness;
float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness;
float f0 = 1.f;
float wiScatter = fwdFresnelSchlick(f0, f90, wiDotN);
float woScatter = fwdFresnelSchlick(f0, f90, woDotN);
return wiScatter * woScatter * energyFactor;
}
else return 0.0f;
}
__device__ inline void bwdFrostbiteDiffuse(const vec3f nrm, const vec3f wi, const vec3f wo, float linearRoughness, vec3f& d_nrm, vec3f& d_wi, vec3f& d_wo, float &d_linearRoughness, const float d_out)
{
float wiDotN = dot(wi, nrm);
float woDotN = dot(wo, nrm);
if (wiDotN > 0.0f && woDotN > 0.0f)
{
vec3f h = safeNormalize(wo + wi);
float wiDotH = dot(wi, h);
float energyBias = 0.5f * linearRoughness;
float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness;
float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness;
float f0 = 1.f;
float wiScatter = fwdFresnelSchlick(f0, f90, wiDotN);
float woScatter = fwdFresnelSchlick(f0, f90, woDotN);
// -------------- BWD --------------
// Backprop: return wiScatter * woScatter * energyFactor;
float d_wiScatter = d_out * woScatter * energyFactor;
float d_woScatter = d_out * wiScatter * energyFactor;
float d_energyFactor = d_out * wiScatter * woScatter;
// Backprop: float woScatter = fwdFresnelSchlick(f0, f90, woDotN);
float d_woDotN = 0.0f, d_f0 = 0.0, d_f90 = 0.0f;
bwdFresnelSchlick(f0, f90, woDotN, d_f0, d_f90, d_woDotN, d_woScatter);
// Backprop: float wiScatter = fwdFresnelSchlick(fd0, fd90, wiDotN);
float d_wiDotN = 0.0f;
bwdFresnelSchlick(f0, f90, wiDotN, d_f0, d_f90, d_wiDotN, d_wiScatter);
// Backprop: float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness;
float d_energyBias = d_f90;
float d_wiDotH = d_f90 * 4 * wiDotH * linearRoughness;
d_linearRoughness += d_f90 * 2 * wiDotH * wiDotH;
// Backprop: float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness;
d_linearRoughness -= (0.51f / 1.51f) * d_energyFactor;
// Backprop: float energyBias = 0.5f * linearRoughness;
d_linearRoughness += 0.5 * d_energyBias;
// Backprop: float wiDotH = dot(wi, h);
vec3f d_h(0);
bwdDot(wi, h, d_wi, d_h, d_wiDotH);
// Backprop: vec3f h = safeNormalize(wo + wi);
vec3f d_wo_wi(0);
bwdSafeNormalize(wo + wi, d_wo_wi, d_h);
d_wi += d_wo_wi; d_wo += d_wo_wi;
bwdDot(wo, nrm, d_wo, d_nrm, d_woDotN);
bwdDot(wi, nrm, d_wi, d_nrm, d_wiDotN);
}
}
//------------------------------------------------------------------------
// Ndf GGX
__device__ inline float fwdNdfGGX(const float alphaSqr, const float cosTheta)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1.0f;
return alphaSqr / (d * d * M_PI);
}
__device__ inline void bwdNdfGGX(const float alphaSqr, const float cosTheta, float& d_alphaSqr, float& d_cosTheta, const float d_out)
{
// Torch only back propagates if clamp doesn't trigger
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float cosThetaSqr = _cosTheta * _cosTheta;
d_alphaSqr += d_out * (1.0f - (alphaSqr + 1.0f) * cosThetaSqr) / (M_PI * powf((alphaSqr - 1.0) * cosThetaSqr + 1.0f, 3.0f));
if (cosTheta > SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON)
{
d_cosTheta += d_out * -(4.0f * (alphaSqr - 1.0f) * alphaSqr * cosTheta) / (M_PI * powf((alphaSqr - 1.0) * cosThetaSqr + 1.0f, 3.0f));
}
}
//------------------------------------------------------------------------
// Lambda GGX
__device__ inline float fwdLambdaGGX(const float alphaSqr, const float cosTheta)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float cosThetaSqr = _cosTheta * _cosTheta;
float tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr;
float res = 0.5f * (sqrtf(1.0f + alphaSqr * tanThetaSqr) - 1.0f);
return res;
}
__device__ inline void bwdLambdaGGX(const float alphaSqr, const float cosTheta, float& d_alphaSqr, float& d_cosTheta, const float d_out)
{
float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON);
float cosThetaSqr = _cosTheta * _cosTheta;
float tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr;
float res = 0.5f * (sqrtf(1.0f + alphaSqr * tanThetaSqr) - 1.0f);
d_alphaSqr += d_out * (0.25 * tanThetaSqr) / sqrtf(alphaSqr * tanThetaSqr + 1.0f);
if (cosTheta > SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON)
d_cosTheta += d_out * -(0.5 * alphaSqr) / (powf(_cosTheta, 3.0f) * sqrtf(alphaSqr / cosThetaSqr - alphaSqr + 1.0f));
}
//------------------------------------------------------------------------
// Masking GGX
__device__ inline float fwdMaskingSmithGGXCorrelated(const float alphaSqr, const float cosThetaI, const float cosThetaO)
{
float lambdaI = fwdLambdaGGX(alphaSqr, cosThetaI);
float lambdaO = fwdLambdaGGX(alphaSqr, cosThetaO);
return 1.0f / (1.0f + lambdaI + lambdaO);
}
__device__ inline void bwdMaskingSmithGGXCorrelated(const float alphaSqr, const float cosThetaI, const float cosThetaO, float& d_alphaSqr, float& d_cosThetaI, float& d_cosThetaO, const float d_out)
{
// FWD eval
float lambdaI = fwdLambdaGGX(alphaSqr, cosThetaI);
float lambdaO = fwdLambdaGGX(alphaSqr, cosThetaO);
// BWD eval
float d_lambdaIO = -d_out / powf(1.0f + lambdaI + lambdaO, 2.0f);
bwdLambdaGGX(alphaSqr, cosThetaI, d_alphaSqr, d_cosThetaI, d_lambdaIO);
bwdLambdaGGX(alphaSqr, cosThetaO, d_alphaSqr, d_cosThetaO, d_lambdaIO);
}
//------------------------------------------------------------------------
// GGX specular
__device__ vec3f fwdPbrSpecular(const vec3f col, const vec3f nrm, const vec3f wo, const vec3f wi, const float alpha, const float min_roughness)
{
float _alpha = clamp(alpha, min_roughness * min_roughness, 1.0f);
float alphaSqr = _alpha * _alpha;
vec3f h = safeNormalize(wo + wi);
float woDotN = dot(wo, nrm);
float wiDotN = dot(wi, nrm);
float woDotH = dot(wo, h);
float nDotH = dot(nrm, h);
float D = fwdNdfGGX(alphaSqr, nDotH);
float G = fwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN);
vec3f F = fwdFresnelSchlick(col, 1.0f, woDotH);
vec3f w = F * D * G * 0.25 / woDotN;
bool frontfacing = (woDotN > SPECULAR_EPSILON) & (wiDotN > SPECULAR_EPSILON);
return frontfacing ? w : 0.0f;
}
__device__ void bwdPbrSpecular(
const vec3f col, const vec3f nrm, const vec3f wo, const vec3f wi, const float alpha, const float min_roughness,
vec3f& d_col, vec3f& d_nrm, vec3f& d_wo, vec3f& d_wi, float& d_alpha, const vec3f d_out)
{
///////////////////////////////////////////////////////////////////////
// FWD eval
float _alpha = clamp(alpha, min_roughness * min_roughness, 1.0f);
float alphaSqr = _alpha * _alpha;
vec3f h = safeNormalize(wo + wi);
float woDotN = dot(wo, nrm);
float wiDotN = dot(wi, nrm);
float woDotH = dot(wo, h);
float nDotH = dot(nrm, h);
float D = fwdNdfGGX(alphaSqr, nDotH);
float G = fwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN);
vec3f F = fwdFresnelSchlick(col, 1.0f, woDotH);
vec3f w = F * D * G * 0.25 / woDotN;
bool frontfacing = (woDotN > SPECULAR_EPSILON) & (wiDotN > SPECULAR_EPSILON);
if (frontfacing)
{
///////////////////////////////////////////////////////////////////////
// BWD eval
vec3f d_F = d_out * D * G * 0.25f / woDotN;
float d_D = sum(d_out * F * G * 0.25f / woDotN);
float d_G = sum(d_out * F * D * 0.25f / woDotN);
float d_woDotN = -sum(d_out * F * D * G * 0.25f / (woDotN * woDotN));
vec3f d_f90(0);
float d_woDotH(0), d_wiDotN(0), d_nDotH(0), d_alphaSqr(0);
bwdFresnelSchlick(col, 1.0f, woDotH, d_col, d_f90, d_woDotH, d_F);
bwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN, d_alphaSqr, d_woDotN, d_wiDotN, d_G);
bwdNdfGGX(alphaSqr, nDotH, d_alphaSqr, d_nDotH, d_D);
vec3f d_h(0);
bwdDot(nrm, h, d_nrm, d_h, d_nDotH);
bwdDot(wo, h, d_wo, d_h, d_woDotH);
bwdDot(wi, nrm, d_wi, d_nrm, d_wiDotN);
bwdDot(wo, nrm, d_wo, d_nrm, d_woDotN);
vec3f d_h_unnorm(0);
bwdSafeNormalize(wo + wi, d_h_unnorm, d_h);
d_wo += d_h_unnorm;
d_wi += d_h_unnorm;
if (alpha > min_roughness * min_roughness)
d_alpha += d_alphaSqr * 2 * alpha;
}
}
//------------------------------------------------------------------------
// Full PBR BSDF
__device__ vec3f fwdPbrBSDF(const vec3f kd, const vec3f arm, const vec3f pos, const vec3f nrm, const vec3f view_pos, const vec3f light_pos, const float min_roughness, int BSDF)
{
vec3f wo = safeNormalize(view_pos - pos);
vec3f wi = safeNormalize(light_pos - pos);
float alpha = arm.y * arm.y;
vec3f spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x);
vec3f diff_col = kd * (1.0f - arm.z);
float diff = 0.0f;
if (BSDF == 0)
diff = fwdLambert(nrm, wi);
else
diff = fwdFrostbiteDiffuse(nrm, wi, wo, arm.y);
vec3f diffuse = diff_col * diff;
vec3f specular = fwdPbrSpecular(spec_col, nrm, wo, wi, alpha, min_roughness);
return diffuse + specular;
}
__device__ void bwdPbrBSDF(
const vec3f kd, const vec3f arm, const vec3f pos, const vec3f nrm, const vec3f view_pos, const vec3f light_pos, const float min_roughness, int BSDF,
vec3f& d_kd, vec3f& d_arm, vec3f& d_pos, vec3f& d_nrm, vec3f& d_view_pos, vec3f& d_light_pos, const vec3f d_out)
{
////////////////////////////////////////////////////////////////////////
// FWD
vec3f _wi = light_pos - pos;
vec3f _wo = view_pos - pos;
vec3f wi = safeNormalize(_wi);
vec3f wo = safeNormalize(_wo);
float alpha = arm.y * arm.y;
vec3f spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x);
vec3f diff_col = kd * (1.0f - arm.z);
float diff = 0.0f;
if (BSDF == 0)
diff = fwdLambert(nrm, wi);
else
diff = fwdFrostbiteDiffuse(nrm, wi, wo, arm.y);
////////////////////////////////////////////////////////////////////////
// BWD
float d_alpha(0);
vec3f d_spec_col(0), d_wi(0), d_wo(0);
bwdPbrSpecular(spec_col, nrm, wo, wi, alpha, min_roughness, d_spec_col, d_nrm, d_wo, d_wi, d_alpha, d_out);
float d_diff = sum(diff_col * d_out);
if (BSDF == 0)
bwdLambert(nrm, wi, d_nrm, d_wi, d_diff);
else
bwdFrostbiteDiffuse(nrm, wi, wo, arm.y, d_nrm, d_wi, d_wo, d_arm.y, d_diff);
// Backprop: diff_col = kd * (1.0f - arm.z)
vec3f d_diff_col = d_out * diff;
d_kd += d_diff_col * (1.0f - arm.z);
d_arm.z -= sum(d_diff_col * kd);
// Backprop: spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x)
d_kd -= d_spec_col * (arm.x - 1.0f) * arm.z;
d_arm.x += sum(d_spec_col * (arm.z * (0.04f - kd) - 0.04f));
d_arm.z -= sum(d_spec_col * (kd - 0.04f) * (arm.x - 1.0f));
// Backprop: alpha = arm.y * arm.y
d_arm.y += d_alpha * 2 * arm.y;
// Backprop: vec3f wi = safeNormalize(light_pos - pos);
vec3f d__wi(0);
bwdSafeNormalize(_wi, d__wi, d_wi);
d_light_pos += d__wi;
d_pos -= d__wi;
// Backprop: vec3f wo = safeNormalize(view_pos - pos);
vec3f d__wo(0);
bwdSafeNormalize(_wo, d__wo, d_wo);
d_view_pos += d__wo;
d_pos -= d__wo;
}
//------------------------------------------------------------------------
// Kernels
__global__ void LambertFwdKernel(LambertKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
float res = fwdLambert(nrm, wi);
p.out.store(px, py, pz, res);
}
__global__ void LambertBwdKernel(LambertKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
float d_out = p.out.fetch1(px, py, pz);
vec3f d_nrm(0), d_wi(0);
bwdLambert(nrm, wi, d_nrm, d_wi, d_out);
p.nrm.store_grad(px, py, pz, d_nrm);
p.wi.store_grad(px, py, pz, d_wi);
}
__global__ void FrostbiteDiffuseFwdKernel(FrostbiteDiffuseKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
vec3f wo = p.wo.fetch3(px, py, pz);
float linearRoughness = p.linearRoughness.fetch1(px, py, pz);
float res = fwdFrostbiteDiffuse(nrm, wi, wo, linearRoughness);
p.out.store(px, py, pz, res);
}
__global__ void FrostbiteDiffuseBwdKernel(FrostbiteDiffuseKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
vec3f wo = p.wo.fetch3(px, py, pz);
float linearRoughness = p.linearRoughness.fetch1(px, py, pz);
float d_out = p.out.fetch1(px, py, pz);
float d_linearRoughness = 0.0f;
vec3f d_nrm(0), d_wi(0), d_wo(0);
bwdFrostbiteDiffuse(nrm, wi, wo, linearRoughness, d_nrm, d_wi, d_wo, d_linearRoughness, d_out);
p.nrm.store_grad(px, py, pz, d_nrm);
p.wi.store_grad(px, py, pz, d_wi);
p.wo.store_grad(px, py, pz, d_wo);
p.linearRoughness.store_grad(px, py, pz, d_linearRoughness);
}
__global__ void FresnelShlickFwdKernel(FresnelShlickKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f f0 = p.f0.fetch3(px, py, pz);
vec3f f90 = p.f90.fetch3(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
vec3f res = fwdFresnelSchlick(f0, f90, cosTheta);
p.out.store(px, py, pz, res);
}
__global__ void FresnelShlickBwdKernel(FresnelShlickKernelParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f f0 = p.f0.fetch3(px, py, pz);
vec3f f90 = p.f90.fetch3(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
vec3f d_out = p.out.fetch3(px, py, pz);
vec3f d_f0(0), d_f90(0);
float d_cosTheta(0);
bwdFresnelSchlick(f0, f90, cosTheta, d_f0, d_f90, d_cosTheta, d_out);
p.f0.store_grad(px, py, pz, d_f0);
p.f90.store_grad(px, py, pz, d_f90);
p.cosTheta.store_grad(px, py, pz, d_cosTheta);
}
__global__ void ndfGGXFwdKernel(NdfGGXParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
float res = fwdNdfGGX(alphaSqr, cosTheta);
p.out.store(px, py, pz, res);
}
__global__ void ndfGGXBwdKernel(NdfGGXParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
float d_out = p.out.fetch1(px, py, pz);
float d_alphaSqr(0), d_cosTheta(0);
bwdNdfGGX(alphaSqr, cosTheta, d_alphaSqr, d_cosTheta, d_out);
p.alphaSqr.store_grad(px, py, pz, d_alphaSqr);
p.cosTheta.store_grad(px, py, pz, d_cosTheta);
}
__global__ void lambdaGGXFwdKernel(NdfGGXParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
float res = fwdLambdaGGX(alphaSqr, cosTheta);
p.out.store(px, py, pz, res);
}
__global__ void lambdaGGXBwdKernel(NdfGGXParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosTheta = p.cosTheta.fetch1(px, py, pz);
float d_out = p.out.fetch1(px, py, pz);
float d_alphaSqr(0), d_cosTheta(0);
bwdLambdaGGX(alphaSqr, cosTheta, d_alphaSqr, d_cosTheta, d_out);
p.alphaSqr.store_grad(px, py, pz, d_alphaSqr);
p.cosTheta.store_grad(px, py, pz, d_cosTheta);
}
__global__ void maskingSmithFwdKernel(MaskingSmithParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosThetaI = p.cosThetaI.fetch1(px, py, pz);
float cosThetaO = p.cosThetaO.fetch1(px, py, pz);
float res = fwdMaskingSmithGGXCorrelated(alphaSqr, cosThetaI, cosThetaO);
p.out.store(px, py, pz, res);
}
__global__ void maskingSmithBwdKernel(MaskingSmithParams p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
float alphaSqr = p.alphaSqr.fetch1(px, py, pz);
float cosThetaI = p.cosThetaI.fetch1(px, py, pz);
float cosThetaO = p.cosThetaO.fetch1(px, py, pz);
float d_out = p.out.fetch1(px, py, pz);
float d_alphaSqr(0), d_cosThetaI(0), d_cosThetaO(0);
bwdMaskingSmithGGXCorrelated(alphaSqr, cosThetaI, cosThetaO, d_alphaSqr, d_cosThetaI, d_cosThetaO, d_out);
p.alphaSqr.store_grad(px, py, pz, d_alphaSqr);
p.cosThetaI.store_grad(px, py, pz, d_cosThetaI);
p.cosThetaO.store_grad(px, py, pz, d_cosThetaO);
}
__global__ void pbrSpecularFwdKernel(PbrSpecular p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f col = p.col.fetch3(px, py, pz);
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wo = p.wo.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
float alpha = p.alpha.fetch1(px, py, pz);
vec3f res = fwdPbrSpecular(col, nrm, wo, wi, alpha, p.min_roughness);
p.out.store(px, py, pz, res);
}
__global__ void pbrSpecularBwdKernel(PbrSpecular p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f col = p.col.fetch3(px, py, pz);
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f wo = p.wo.fetch3(px, py, pz);
vec3f wi = p.wi.fetch3(px, py, pz);
float alpha = p.alpha.fetch1(px, py, pz);
vec3f d_out = p.out.fetch3(px, py, pz);
float d_alpha(0);
vec3f d_col(0), d_nrm(0), d_wo(0), d_wi(0);
bwdPbrSpecular(col, nrm, wo, wi, alpha, p.min_roughness, d_col, d_nrm, d_wo, d_wi, d_alpha, d_out);
p.col.store_grad(px, py, pz, d_col);
p.nrm.store_grad(px, py, pz, d_nrm);
p.wo.store_grad(px, py, pz, d_wo);
p.wi.store_grad(px, py, pz, d_wi);
p.alpha.store_grad(px, py, pz, d_alpha);
}
__global__ void pbrBSDFFwdKernel(PbrBSDF p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f kd = p.kd.fetch3(px, py, pz);
vec3f arm = p.arm.fetch3(px, py, pz);
vec3f pos = p.pos.fetch3(px, py, pz);
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f view_pos = p.view_pos.fetch3(px, py, pz);
vec3f light_pos = p.light_pos.fetch3(px, py, pz);
vec3f res = fwdPbrBSDF(kd, arm, pos, nrm, view_pos, light_pos, p.min_roughness, p.BSDF);
p.out.store(px, py, pz, res);
}
__global__ void pbrBSDFBwdKernel(PbrBSDF p)
{
// Calculate pixel position.
unsigned int px = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int py = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int pz = blockIdx.z;
if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z)
return;
vec3f kd = p.kd.fetch3(px, py, pz);
vec3f arm = p.arm.fetch3(px, py, pz);
vec3f pos = p.pos.fetch3(px, py, pz);
vec3f nrm = p.nrm.fetch3(px, py, pz);
vec3f view_pos = p.view_pos.fetch3(px, py, pz);
vec3f light_pos = p.light_pos.fetch3(px, py, pz);
vec3f d_out = p.out.fetch3(px, py, pz);
vec3f d_kd(0), d_arm(0), d_pos(0), d_nrm(0), d_view_pos(0), d_light_pos(0);
bwdPbrBSDF(kd, arm, pos, nrm, view_pos, light_pos, p.min_roughness, p.BSDF, d_kd, d_arm, d_pos, d_nrm, d_view_pos, d_light_pos, d_out);
p.kd.store_grad(px, py, pz, d_kd);
p.arm.store_grad(px, py, pz, d_arm);
p.pos.store_grad(px, py, pz, d_pos);
p.nrm.store_grad(px, py, pz, d_nrm);
p.view_pos.store_grad(px, py, pz, d_view_pos);
p.light_pos.store_grad(px, py, pz, d_light_pos);
}
|