File size: 7,401 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43258f9
 
 
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import torch
import numpy as np
import os
import nvdiffrast.torch as dr
from . import Geometry
from .flexicubes import FlexiCubes # replace later
from .dmtet import sdf_reg_loss_batch
from . import mesh
import torch.nn.functional as F
from src.utils import render
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] += ':/usr/local/cuda/bin'
os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda/lib64'
def get_center_boundary_index(grid_res, device):
    v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
    v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
    center_indices = torch.nonzero(v.reshape(-1))

    v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
    v[:2, ...] = True
    v[-2:, ...] = True
    v[:, :2, ...] = True
    v[:, -2:, ...] = True
    v[:, :, :2] = True
    v[:, :, -2:] = True
    boundary_indices = torch.nonzero(v.reshape(-1))
    return center_indices, boundary_indices

###############################################################################
#  Geometry interface
###############################################################################
class FlexiCubesGeometry(Geometry):
    def __init__(
            self, grid_res=64, scale=2.0, device='cuda', renderer=None,
            render_type='neural_render', args=None):
        super(FlexiCubesGeometry, self).__init__()
        self.grid_res = grid_res
        self.device = device
        self.args = args
        self.fc = FlexiCubes(device, weight_scale=0.5)
        self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
        if isinstance(scale, list):
            self.verts[:, 0] = self.verts[:, 0] * scale[0]
            self.verts[:, 1] = self.verts[:, 1] * scale[1]
            self.verts[:, 2] = self.verts[:, 2] * scale[1]
        else:
            self.verts = self.verts * scale
            
        all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
        self.all_edges = torch.unique(all_edges, dim=0)

        # Parameters used for fix boundary sdf
        self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
        self.renderer = renderer
        self.render_type = render_type
        self.ctx = dr.RasterizeCudaContext(device=device)

    def getAABB(self):
        return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
    
    @torch.no_grad()
    def map_uv(self, face_gidx, max_idx):
        N = int(np.ceil(np.sqrt((max_idx+1)//2)))
        tex_y, tex_x = torch.meshgrid(
            torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
            torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda")
        )

        pad = 0.9 / N

        uvs = torch.stack([
            tex_x      , tex_y,
            tex_x + pad, tex_y,
            tex_x + pad, tex_y + pad,
            tex_x      , tex_y + pad
        ], dim=-1).view(-1, 2)

        def _idx(tet_idx, N):
            x = tet_idx % N
            y = torch.div(tet_idx, N, rounding_mode='floor')
            return y * N + x

        tet_idx = _idx(torch.div(face_gidx, N, rounding_mode='floor'), N)
        tri_idx = face_gidx % 2

        uv_idx = torch.stack((
            tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2
        ), dim = -1). view(-1, 3)

        return uvs, uv_idx
    
    def rotate_x(self, a, device=None):
        s, c = np.sin(a), np.cos(a)
        return torch.tensor([[1, 0, 0, 0], 
                            [0, c,-s, 0], 
                            [0, s, c, 0], 
                         [0, 0, 0, 1]], dtype=torch.float32, device=device)
    def rotate_z(self, a, device=None):
        s, c = np.sin(a), np.cos(a)
        return torch.tensor([[ c, -s, 0, 0],
                            [ s,  c, 0, 0],
                            [ 0,  0, 1, 0],
                            [ 0,  0, 0, 1]], dtype=torch.float32, device=device)
    def rotate_y(self, a, device=None):
        s, c = np.sin(a), np.cos(a)
        return torch.tensor([[ c, 0,  s, 0],
                            [ 0, 1,  0, 0],
                            [-s, 0,  c, 0],
                            [ 0, 0,  0, 1]], dtype=torch.float32, device=device)


    def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
        if indices is None:
            indices = self.indices

        verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
                                            beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
                                            gamma_f=weight_n[:, 20], training=is_training
                                            )
        
        face_gidx = torch.arange(faces.shape[0], dtype=torch.long, device="cuda")
        uvs, uv_idx = self.map_uv(face_gidx, faces.shape[0])
        
        verts = verts @ self.rotate_x(np.pi / 2, device=verts.device)[:3,:3]
        verts = verts @ self.rotate_y(np.pi / 2, device=verts.device)[:3,:3]

        imesh = mesh.Mesh(verts, faces, v_tex=uvs, t_tex_idx=uv_idx)
       
        imesh = mesh.auto_normals(imesh)
        imesh = mesh.compute_tangents(imesh)
        
        return verts, faces, v_reg_loss, imesh


    
    def render_mesh(self, mesh_v_nx3, mesh_f_fx3, mesh, camera_mv_bx4x4, camera_pos, env, planes, kd_fn, materials, resolution=256, hierarchical_mask=False, gt_albedo_map=None, gt_normal_map=None, gt_depth_map=None):
        return_value = dict()
        buffer_dict = render.render_mesh(self.ctx, mesh, camera_mv_bx4x4, camera_pos, env, 
                                         planes, kd_fn, materials, [resolution, resolution], 
                                         spp=1, num_layers=1, msaa=True, background=None, gt_albedo_map=gt_albedo_map)

        return buffer_dict
    

    def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
        # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
        v_list = []
        f_list = []
        n_batch = v_deformed_bxnx3.shape[0]
        all_render_output = []
        for i_batch in range(n_batch):
            verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
            v_list.append(verts_nx3)
            f_list.append(faces_fx3)
            render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
            all_render_output.append(render_output)

        # Concatenate all render output
        return_keys = all_render_output[0].keys()
        return_value = dict()
        for k in return_keys:
            value = [v[k] for v in all_render_output]
            return_value[k] = value
            # We can do concatenation outside of the render
        return return_value