File size: 7,255 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import numpy as np
import os
import nvdiffrast.torch as dr
from . import Geometry
from .flexicubes import FlexiCubes # replace later
from .dmtet import sdf_reg_loss_batch
from . import mesh
import torch.nn.functional as F
from src.utils import render
def get_center_boundary_index(grid_res, device):
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
center_indices = torch.nonzero(v.reshape(-1))
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
v[:2, ...] = True
v[-2:, ...] = True
v[:, :2, ...] = True
v[:, -2:, ...] = True
v[:, :, :2] = True
v[:, :, -2:] = True
boundary_indices = torch.nonzero(v.reshape(-1))
return center_indices, boundary_indices
###############################################################################
# Geometry interface
###############################################################################
class FlexiCubesGeometry(Geometry):
def __init__(
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
render_type='neural_render', args=None):
super(FlexiCubesGeometry, self).__init__()
self.grid_res = grid_res
self.device = device
self.args = args
self.fc = FlexiCubes(device, weight_scale=0.5)
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
if isinstance(scale, list):
self.verts[:, 0] = self.verts[:, 0] * scale[0]
self.verts[:, 1] = self.verts[:, 1] * scale[1]
self.verts[:, 2] = self.verts[:, 2] * scale[1]
else:
self.verts = self.verts * scale
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
self.all_edges = torch.unique(all_edges, dim=0)
# Parameters used for fix boundary sdf
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
self.renderer = renderer
self.render_type = render_type
self.ctx = dr.RasterizeCudaContext(device=device)
def getAABB(self):
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
@torch.no_grad()
def map_uv(self, face_gidx, max_idx):
N = int(np.ceil(np.sqrt((max_idx+1)//2)))
tex_y, tex_x = torch.meshgrid(
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda")
)
pad = 0.9 / N
uvs = torch.stack([
tex_x , tex_y,
tex_x + pad, tex_y,
tex_x + pad, tex_y + pad,
tex_x , tex_y + pad
], dim=-1).view(-1, 2)
def _idx(tet_idx, N):
x = tet_idx % N
y = torch.div(tet_idx, N, rounding_mode='floor')
return y * N + x
tet_idx = _idx(torch.div(face_gidx, N, rounding_mode='floor'), N)
tri_idx = face_gidx % 2
uv_idx = torch.stack((
tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2
), dim = -1). view(-1, 3)
return uvs, uv_idx
def rotate_x(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_z(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, -s, 0, 0],
[ s, c, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
if indices is None:
indices = self.indices
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
gamma_f=weight_n[:, 20], training=is_training
)
face_gidx = torch.arange(faces.shape[0], dtype=torch.long, device="cuda")
uvs, uv_idx = self.map_uv(face_gidx, faces.shape[0])
verts = verts @ self.rotate_x(np.pi / 2, device=verts.device)[:3,:3]
verts = verts @ self.rotate_y(np.pi / 2, device=verts.device)[:3,:3]
imesh = mesh.Mesh(verts, faces, v_tex=uvs, t_tex_idx=uv_idx)
imesh = mesh.auto_normals(imesh)
imesh = mesh.compute_tangents(imesh)
return verts, faces, v_reg_loss, imesh
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, mesh, camera_mv_bx4x4, camera_pos, env, planes, kd_fn, materials, resolution=256, hierarchical_mask=False, gt_albedo_map=None, gt_normal_map=None, gt_depth_map=None):
return_value = dict()
buffer_dict = render.render_mesh(self.ctx, mesh, camera_mv_bx4x4, camera_pos, env,
planes, kd_fn, materials, [resolution, resolution],
spp=1, num_layers=1, msaa=True, background=None, gt_albedo_map=gt_albedo_map)
return buffer_dict
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
v_list = []
f_list = []
n_batch = v_deformed_bxnx3.shape[0]
all_render_output = []
for i_batch in range(n_batch):
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
v_list.append(verts_nx3)
f_list.append(faces_fx3)
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
all_render_output.append(render_output)
# Concatenate all render output
return_keys = all_render_output[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in all_render_output]
return_value[k] = value
# We can do concatenation outside of the render
return return_value
|