File size: 19,646 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import os
import numpy as np
import torch
import nvdiffrast.torch as dr
import imageio

#----------------------------------------------------------------------------
# Vector operations
#----------------------------------------------------------------------------

def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    return torch.sum(x*y, -1, keepdim=True)

def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
    return 2*dot(x, n)*n - x

def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN

def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return x / length(x, eps)

def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
    return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)

#----------------------------------------------------------------------------
# sRGB color transforms
#----------------------------------------------------------------------------

def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
    return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055)

def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
    assert f.shape[-1] == 3 or f.shape[-1] == 4
    out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f)
    assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
    return out

def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
    return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4))

def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
    assert f.shape[-1] == 3 or f.shape[-1] == 4
    out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f)
    assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
    return out

def reinhard(f: torch.Tensor) -> torch.Tensor:
    return f/(1+f)

#-----------------------------------------------------------------------------------
# Metrics (taken from jaxNerf source code, in order to replicate their measurements)
#
# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266
#
#-----------------------------------------------------------------------------------

def mse_to_psnr(mse):
  """Compute PSNR given an MSE (we assume the maximum pixel value is 1)."""
  return -10. / np.log(10.) * np.log(mse)

def psnr_to_mse(psnr):
  """Compute MSE given a PSNR (we assume the maximum pixel value is 1)."""
  return np.exp(-0.1 * np.log(10.) * psnr)

#----------------------------------------------------------------------------
# Displacement texture lookup
#----------------------------------------------------------------------------

def get_miplevels(texture: np.ndarray) -> float:
    minDim = min(texture.shape[0], texture.shape[1])
    return np.floor(np.log2(minDim))

def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor:
    tex_map = tex_map[None, ...]    # Add batch dimension
    tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW
    tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False)
    tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC
    return tex[0, 0, ...]

#----------------------------------------------------------------------------
# Cubemap utility functions
#----------------------------------------------------------------------------

def cube_to_dir(s, x, y):
    if s == 0:   rx, ry, rz = torch.ones_like(x), -y, -x
    elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x
    elif s == 2: rx, ry, rz = x, torch.ones_like(x), y
    elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y
    elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x)
    elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x)
    return torch.stack((rx, ry, rz), dim=-1)

def latlong_to_cubemap(latlong_map, res):
    cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda')
    for s in range(6):
        gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), 
                                torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
                                indexing='ij')
        v = safe_normalize(cube_to_dir(s, gx, gy))

        tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5
        tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi
        texcoord = torch.cat((tu, tv), dim=-1)

        cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0]
    return cubemap

def cubemap_to_latlong(cubemap, res):
    gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), 
                            torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
                            indexing='ij')
    
    sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi)
    sinphi, cosphi     = torch.sin(gx*np.pi), torch.cos(gx*np.pi)
    
    reflvec = torch.stack((
        sintheta*sinphi, 
        costheta, 
        -sintheta*cosphi
        ), dim=-1)
    return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0]

#----------------------------------------------------------------------------
# Image scaling
#----------------------------------------------------------------------------

def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
    return scale_img_nhwc(x[None, ...], size, mag, min)[0]

def scale_img_nhwc(x  : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
    size = tuple(int(s) for s in size)
    assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
    y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
    if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
        y = torch.nn.functional.interpolate(y, size, mode=min)
    else: # Magnification
        if mag == 'bilinear' or mag == 'bicubic':
            y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
        else:
            y = torch.nn.functional.interpolate(y, size, mode=mag)
    return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC

def avg_pool_nhwc(x  : torch.Tensor, size) -> torch.Tensor:
    y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
    y = torch.nn.functional.avg_pool2d(y, size)
    return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC

#----------------------------------------------------------------------------
# Behaves similar to tf.segment_sum
#----------------------------------------------------------------------------

def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor:
    num_segments = torch.unique_consecutive(segment_ids).shape[0]

    # Repeats ids until same dimension as data
    if len(segment_ids.shape) == 1:
        s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long()
        segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])

    assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal"

    shape = [num_segments] + list(data.shape[1:])
    result = torch.zeros(*shape, dtype=torch.float32, device='cuda')
    result = result.scatter_add(0, segment_ids, data)
    return result

#----------------------------------------------------------------------------
# Matrix helpers.
#----------------------------------------------------------------------------

def fovx_to_fovy(fovx, aspect):
    return np.arctan(np.tan(fovx / 2) / aspect) * 2.0

def focal_length_to_fovy(focal_length, sensor_height):
    return 2 * np.arctan(0.5 * sensor_height / focal_length)

# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
    y = np.tan(fovy / 2)
    return torch.tensor([[1/(y*aspect),    0,            0,              0], 
                         [           0, 1/-y,            0,              0], 
                         [           0,    0, -(f+n)/(f-n), -(2*f*n)/(f-n)], 
                         [           0,    0,           -1,              0]], dtype=torch.float32, device=device)

# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None):
    y = np.tan(fovy / 2)

    # Full frustum
    R, L = aspect*y, -aspect*y
    T, B = y, -y

    # Create a randomized sub-frustum
    width  = (R-L)*fraction
    height = (T-B)*fraction
    xstart = (R-L)*rx
    ystart = (T-B)*ry

    l = L + xstart
    r = l + width
    b = B + ystart
    t = b + height
    
    # https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
    return torch.tensor([[2/(r-l),        0,  (r+l)/(r-l),              0], 
                         [      0, -2/(t-b),  (t+b)/(t-b),              0], 
                         [      0,        0, -(f+n)/(f-n), -(2*f*n)/(f-n)], 
                         [      0,        0,           -1,              0]], dtype=torch.float32, device=device)

def translate(x, y, z, device=None):
    return torch.tensor([[1, 0, 0, x], 
                         [0, 1, 0, y], 
                         [0, 0, 1, z], 
                         [0, 0, 0, 1]], dtype=torch.float32, device=device)

def rotate_x(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[1, 0, 0, 0], 
                         [0, c,-s, 0], 
                         [0, s, c, 0], 
                         [0, 0, 0, 1]], dtype=torch.float32, device=device)

def rotate_y(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[ c, 0, s, 0], 
                         [ 0, 1, 0, 0], 
                         [-s, 0, c, 0], 
                         [ 0, 0, 0, 1]], dtype=torch.float32, device=device)

def scale(s, device=None):
    return torch.tensor([[ s, 0, 0, 0], 
                         [ 0, s, 0, 0], 
                         [ 0, 0, s, 0], 
                         [ 0, 0, 0, 1]], dtype=torch.float32, device=device)

def lookAt(eye, at, up):
    a = eye - at
    w = a / torch.linalg.norm(a)
    u = torch.cross(up, w)
    u = u / torch.linalg.norm(u)
    v = torch.cross(w, u)
    translate = torch.tensor([[1, 0, 0, -eye[0]], 
                              [0, 1, 0, -eye[1]], 
                              [0, 0, 1, -eye[2]], 
                              [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
    rotate = torch.tensor([[u[0], u[1], u[2], 0], 
                           [v[0], v[1], v[2], 0], 
                           [w[0], w[1], w[2], 0], 
                           [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
    return rotate @ translate

@torch.no_grad()
def random_rotation_translation(t, device=None):
    m = np.random.normal(size=[3, 3])
    m[1] = np.cross(m[0], m[2])
    m[2] = np.cross(m[0], m[1])
    m = m / np.linalg.norm(m, axis=1, keepdims=True)
    m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
    m[3, 3] = 1.0
    m[:3, 3] = np.random.uniform(-t, t, size=[3])
    return torch.tensor(m, dtype=torch.float32, device=device)

@torch.no_grad()
def random_rotation(device=None):
    m = np.random.normal(size=[3, 3])
    m[1] = np.cross(m[0], m[2])
    m[2] = np.cross(m[0], m[1])
    m = m / np.linalg.norm(m, axis=1, keepdims=True)
    m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
    m[3, 3] = 1.0
    m[:3, 3] = np.array([0,0,0]).astype(np.float32)
    return torch.tensor(m, dtype=torch.float32, device=device)

#----------------------------------------------------------------------------
# Compute focal points of a set of lines using least squares. 
# handy for poorly centered datasets
#----------------------------------------------------------------------------

def lines_focal(o, d):
    d = safe_normalize(d)
    I = torch.eye(3, dtype=o.dtype, device=o.device)
    S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0)
    C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1)
    return torch.linalg.pinv(S) @ C

#----------------------------------------------------------------------------
# Cosine sample around a vector N
#----------------------------------------------------------------------------
@torch.no_grad()
def cosine_sample(N, size=None):
    # construct local frame
    N = N/torch.linalg.norm(N)

    dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device)
    dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device)

    dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1)
    #dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1
    dx = dx / torch.linalg.norm(dx)
    dy = torch.cross(N,dx)
    dy = dy / torch.linalg.norm(dy)

    # cosine sampling in local frame
    if size is None:
        phi = 2.0 * np.pi * np.random.uniform()
        s = np.random.uniform()
    else:
        phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device)
        s = torch.rand(*size, 1, dtype=N.dtype, device=N.device)
    costheta = np.sqrt(s)
    sintheta = np.sqrt(1.0 - s)

    # cartesian vector in local space
    x = np.cos(phi)*sintheta
    y = np.sin(phi)*sintheta
    z = costheta

    # local to world
    return dx*x + dy*y + N*z

#----------------------------------------------------------------------------
# Bilinear downsample by 2x.
#----------------------------------------------------------------------------

def bilinear_downsample(x : torch.tensor) -> torch.Tensor:
    w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
    w = w.expand(x.shape[-1], 1, 4, 4) 
    x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1])
    return x.permute(0, 2, 3, 1)

#----------------------------------------------------------------------------
# Bilinear downsample log(spp) steps
#----------------------------------------------------------------------------

def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor:
    w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
    g = x.shape[-1]
    w = w.expand(g, 1, 4, 4) 
    x = x.permute(0, 3, 1, 2) # NHWC -> NCHW
    steps = int(np.log2(spp))
    for _ in range(steps):
        xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate')
        x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g)
    return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC

#----------------------------------------------------------------------------
# Singleton initialize GLFW
#----------------------------------------------------------------------------

_glfw_initialized = False
def init_glfw():
    global _glfw_initialized
    try:
        import glfw
        glfw.ERROR_REPORTING = 'raise'
        glfw.default_window_hints()
        glfw.window_hint(glfw.VISIBLE, glfw.FALSE)
        test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet
    except glfw.GLFWError as e:
        if e.error_code == glfw.NOT_INITIALIZED:
            glfw.init()
            _glfw_initialized = True

#----------------------------------------------------------------------------
# Image display function using OpenGL.
#----------------------------------------------------------------------------

_glfw_window = None
def display_image(image, title=None):
    # Import OpenGL
    import OpenGL.GL as gl
    import glfw

    # Zoom image if requested.
    image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image)
    height, width, channels = image.shape

    # Initialize window.
    init_glfw()
    if title is None:
        title = 'Debug window'
    global _glfw_window
    if _glfw_window is None:
        glfw.default_window_hints()
        _glfw_window = glfw.create_window(width, height, title, None, None)
        glfw.make_context_current(_glfw_window)
        glfw.show_window(_glfw_window)
        glfw.swap_interval(0)
    else:
        glfw.make_context_current(_glfw_window)
        glfw.set_window_title(_glfw_window, title)
        glfw.set_window_size(_glfw_window, width, height)

    # Update window.
    glfw.poll_events()
    gl.glClearColor(0, 0, 0, 1)
    gl.glClear(gl.GL_COLOR_BUFFER_BIT)
    gl.glWindowPos2f(0, 0)
    gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
    gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels]
    gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name]
    gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1])
    glfw.swap_buffers(_glfw_window)
    if glfw.window_should_close(_glfw_window):
        return False
    return True

#----------------------------------------------------------------------------
# Image save/load helper.
#----------------------------------------------------------------------------

def save_image(fn, x : np.ndarray):
    try:
        if os.path.splitext(fn)[1] == ".png":
            imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving
        else:
            imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
    except:
        print("WARNING: FAILED to save image %s" % fn)

def save_image_raw(fn, x : np.ndarray):
    try:
        imageio.imwrite(fn, x)
    except:
        print("WARNING: FAILED to save image %s" % fn)


def load_image_raw(fn) -> np.ndarray:
    return imageio.imread(fn)

def load_image(fn) -> np.ndarray:
    img = load_image_raw(fn)
    if img.dtype == np.float32: # HDR image
        return img
    else: # LDR image
        return img.astype(np.float32) / 255

#----------------------------------------------------------------------------

def time_to_text(x):
    if x > 3600:
        return "%.2f h" % (x / 3600)
    elif x > 60:
        return "%.2f m" % (x / 60)
    else:
        return "%.2f s" % x

#----------------------------------------------------------------------------

def checkerboard(res, checker_size) -> np.ndarray:
    tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2)
    tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2)
    check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33
    check = check[:res[0], :res[1]]
    return np.stack((check, check, check), axis=-1)