File size: 19,646 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
import imageio
#----------------------------------------------------------------------------
# Vector operations
#----------------------------------------------------------------------------
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
#----------------------------------------------------------------------------
# sRGB color transforms
#----------------------------------------------------------------------------
def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055)
def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4))
def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
def reinhard(f: torch.Tensor) -> torch.Tensor:
return f/(1+f)
#-----------------------------------------------------------------------------------
# Metrics (taken from jaxNerf source code, in order to replicate their measurements)
#
# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266
#
#-----------------------------------------------------------------------------------
def mse_to_psnr(mse):
"""Compute PSNR given an MSE (we assume the maximum pixel value is 1)."""
return -10. / np.log(10.) * np.log(mse)
def psnr_to_mse(psnr):
"""Compute MSE given a PSNR (we assume the maximum pixel value is 1)."""
return np.exp(-0.1 * np.log(10.) * psnr)
#----------------------------------------------------------------------------
# Displacement texture lookup
#----------------------------------------------------------------------------
def get_miplevels(texture: np.ndarray) -> float:
minDim = min(texture.shape[0], texture.shape[1])
return np.floor(np.log2(minDim))
def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor:
tex_map = tex_map[None, ...] # Add batch dimension
tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW
tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False)
tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC
return tex[0, 0, ...]
#----------------------------------------------------------------------------
# Cubemap utility functions
#----------------------------------------------------------------------------
def cube_to_dir(s, x, y):
if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x
elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x
elif s == 2: rx, ry, rz = x, torch.ones_like(x), y
elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y
elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x)
elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x)
return torch.stack((rx, ry, rz), dim=-1)
def latlong_to_cubemap(latlong_map, res):
cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda')
for s in range(6):
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'),
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
indexing='ij')
v = safe_normalize(cube_to_dir(s, gx, gy))
tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5
tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi
texcoord = torch.cat((tu, tv), dim=-1)
cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0]
return cubemap
def cubemap_to_latlong(cubemap, res):
gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'),
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
indexing='ij')
sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi)
sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi)
reflvec = torch.stack((
sintheta*sinphi,
costheta,
-sintheta*cosphi
), dim=-1)
return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0]
#----------------------------------------------------------------------------
# Image scaling
#----------------------------------------------------------------------------
def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
size = tuple(int(s) for s in size)
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor:
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
y = torch.nn.functional.avg_pool2d(y, size)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Behaves similar to tf.segment_sum
#----------------------------------------------------------------------------
def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor:
num_segments = torch.unique_consecutive(segment_ids).shape[0]
# Repeats ids until same dimension as data
if len(segment_ids.shape) == 1:
s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long()
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal"
shape = [num_segments] + list(data.shape[1:])
result = torch.zeros(*shape, dtype=torch.float32, device='cuda')
result = result.scatter_add(0, segment_ids, data)
return result
#----------------------------------------------------------------------------
# Matrix helpers.
#----------------------------------------------------------------------------
def fovx_to_fovy(fovx, aspect):
return np.arctan(np.tan(fovx / 2) / aspect) * 2.0
def focal_length_to_fovy(focal_length, sensor_height):
return 2 * np.arctan(0.5 * sensor_height / focal_length)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
return torch.tensor([[1/(y*aspect), 0, 0, 0],
[ 0, 1/-y, 0, 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
# Full frustum
R, L = aspect*y, -aspect*y
T, B = y, -y
# Create a randomized sub-frustum
width = (R-L)*fraction
height = (T-B)*fraction
xstart = (R-L)*rx
ystart = (T-B)*ry
l = L + xstart
r = l + width
b = B + ystart
t = b + height
# https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0],
[ 0, -2/(t-b), (t+b)/(t-b), 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
def translate(x, y, z, device=None):
return torch.tensor([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def scale(s, device=None):
return torch.tensor([[ s, 0, 0, 0],
[ 0, s, 0, 0],
[ 0, 0, s, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def lookAt(eye, at, up):
a = eye - at
w = a / torch.linalg.norm(a)
u = torch.cross(up, w)
u = u / torch.linalg.norm(u)
v = torch.cross(w, u)
translate = torch.tensor([[1, 0, 0, -eye[0]],
[0, 1, 0, -eye[1]],
[0, 0, 1, -eye[2]],
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
rotate = torch.tensor([[u[0], u[1], u[2], 0],
[v[0], v[1], v[2], 0],
[w[0], w[1], w[2], 0],
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
return rotate @ translate
@torch.no_grad()
def random_rotation_translation(t, device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return torch.tensor(m, dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation(device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.array([0,0,0]).astype(np.float32)
return torch.tensor(m, dtype=torch.float32, device=device)
#----------------------------------------------------------------------------
# Compute focal points of a set of lines using least squares.
# handy for poorly centered datasets
#----------------------------------------------------------------------------
def lines_focal(o, d):
d = safe_normalize(d)
I = torch.eye(3, dtype=o.dtype, device=o.device)
S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0)
C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1)
return torch.linalg.pinv(S) @ C
#----------------------------------------------------------------------------
# Cosine sample around a vector N
#----------------------------------------------------------------------------
@torch.no_grad()
def cosine_sample(N, size=None):
# construct local frame
N = N/torch.linalg.norm(N)
dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device)
dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device)
dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1)
#dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1
dx = dx / torch.linalg.norm(dx)
dy = torch.cross(N,dx)
dy = dy / torch.linalg.norm(dy)
# cosine sampling in local frame
if size is None:
phi = 2.0 * np.pi * np.random.uniform()
s = np.random.uniform()
else:
phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device)
s = torch.rand(*size, 1, dtype=N.dtype, device=N.device)
costheta = np.sqrt(s)
sintheta = np.sqrt(1.0 - s)
# cartesian vector in local space
x = np.cos(phi)*sintheta
y = np.sin(phi)*sintheta
z = costheta
# local to world
return dx*x + dy*y + N*z
#----------------------------------------------------------------------------
# Bilinear downsample by 2x.
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
w = w.expand(x.shape[-1], 1, 4, 4)
x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1])
return x.permute(0, 2, 3, 1)
#----------------------------------------------------------------------------
# Bilinear downsample log(spp) steps
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
g = x.shape[-1]
w = w.expand(g, 1, 4, 4)
x = x.permute(0, 3, 1, 2) # NHWC -> NCHW
steps = int(np.log2(spp))
for _ in range(steps):
xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate')
x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g)
return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Singleton initialize GLFW
#----------------------------------------------------------------------------
_glfw_initialized = False
def init_glfw():
global _glfw_initialized
try:
import glfw
glfw.ERROR_REPORTING = 'raise'
glfw.default_window_hints()
glfw.window_hint(glfw.VISIBLE, glfw.FALSE)
test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet
except glfw.GLFWError as e:
if e.error_code == glfw.NOT_INITIALIZED:
glfw.init()
_glfw_initialized = True
#----------------------------------------------------------------------------
# Image display function using OpenGL.
#----------------------------------------------------------------------------
_glfw_window = None
def display_image(image, title=None):
# Import OpenGL
import OpenGL.GL as gl
import glfw
# Zoom image if requested.
image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image)
height, width, channels = image.shape
# Initialize window.
init_glfw()
if title is None:
title = 'Debug window'
global _glfw_window
if _glfw_window is None:
glfw.default_window_hints()
_glfw_window = glfw.create_window(width, height, title, None, None)
glfw.make_context_current(_glfw_window)
glfw.show_window(_glfw_window)
glfw.swap_interval(0)
else:
glfw.make_context_current(_glfw_window)
glfw.set_window_title(_glfw_window, title)
glfw.set_window_size(_glfw_window, width, height)
# Update window.
glfw.poll_events()
gl.glClearColor(0, 0, 0, 1)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glWindowPos2f(0, 0)
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels]
gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name]
gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1])
glfw.swap_buffers(_glfw_window)
if glfw.window_should_close(_glfw_window):
return False
return True
#----------------------------------------------------------------------------
# Image save/load helper.
#----------------------------------------------------------------------------
def save_image(fn, x : np.ndarray):
try:
if os.path.splitext(fn)[1] == ".png":
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving
else:
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
except:
print("WARNING: FAILED to save image %s" % fn)
def save_image_raw(fn, x : np.ndarray):
try:
imageio.imwrite(fn, x)
except:
print("WARNING: FAILED to save image %s" % fn)
def load_image_raw(fn) -> np.ndarray:
return imageio.imread(fn)
def load_image(fn) -> np.ndarray:
img = load_image_raw(fn)
if img.dtype == np.float32: # HDR image
return img
else: # LDR image
return img.astype(np.float32) / 255
#----------------------------------------------------------------------------
def time_to_text(x):
if x > 3600:
return "%.2f h" % (x / 3600)
elif x > 60:
return "%.2f m" % (x / 60)
else:
return "%.2f s" % x
#----------------------------------------------------------------------------
def checkerboard(res, checker_size) -> np.ndarray:
tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2)
tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2)
check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33
check = check[:res[0], :res[1]]
return np.stack((check, check, check), axis=-1)
|