|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
|
|
from . import obj |
|
from src.models.geometry.rep_3d import util |
|
|
|
|
|
|
|
|
|
class Mesh: |
|
def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): |
|
self.v_pos = v_pos |
|
self.v_nrm = v_nrm |
|
self.v_tex = v_tex |
|
self.v_tng = v_tng |
|
self.t_pos_idx = t_pos_idx |
|
self.t_nrm_idx = t_nrm_idx |
|
self.t_tex_idx = t_tex_idx |
|
self.t_tng_idx = t_tng_idx |
|
self.material = material |
|
|
|
if base is not None: |
|
self.copy_none(base) |
|
|
|
def copy_none(self, other): |
|
if self.v_pos is None: |
|
self.v_pos = other.v_pos |
|
if self.t_pos_idx is None: |
|
self.t_pos_idx = other.t_pos_idx |
|
if self.v_nrm is None: |
|
self.v_nrm = other.v_nrm |
|
if self.t_nrm_idx is None: |
|
self.t_nrm_idx = other.t_nrm_idx |
|
if self.v_tex is None: |
|
self.v_tex = other.v_tex |
|
if self.t_tex_idx is None: |
|
self.t_tex_idx = other.t_tex_idx |
|
if self.v_tng is None: |
|
self.v_tng = other.v_tng |
|
if self.t_tng_idx is None: |
|
self.t_tng_idx = other.t_tng_idx |
|
if self.material is None: |
|
self.material = other.material |
|
|
|
def clone(self): |
|
out = Mesh(base=self) |
|
if out.v_pos is not None: |
|
out.v_pos = out.v_pos.clone().detach() |
|
if out.t_pos_idx is not None: |
|
out.t_pos_idx = out.t_pos_idx.clone().detach() |
|
if out.v_nrm is not None: |
|
out.v_nrm = out.v_nrm.clone().detach() |
|
if out.t_nrm_idx is not None: |
|
out.t_nrm_idx = out.t_nrm_idx.clone().detach() |
|
if out.v_tex is not None: |
|
out.v_tex = out.v_tex.clone().detach() |
|
if out.t_tex_idx is not None: |
|
out.t_tex_idx = out.t_tex_idx.clone().detach() |
|
if out.v_tng is not None: |
|
out.v_tng = out.v_tng.clone().detach() |
|
if out.t_tng_idx is not None: |
|
out.t_tng_idx = out.t_tng_idx.clone().detach() |
|
return out |
|
def rotate_x_90(self): |
|
|
|
rotate_x = torch.tensor([[1, 0, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, 0, 1]], dtype=torch.float32, device=self.v_pos.device) |
|
|
|
|
|
if self.v_pos is not None: |
|
v_pos_homo = torch.cat((self.v_pos, torch.ones(self.v_pos.shape[0], 1, device=self.v_pos.device)), dim=1) |
|
v_pos_rotated = v_pos_homo @ rotate_x.T |
|
self.v_pos = v_pos_rotated[:, :3] |
|
|
|
|
|
if self.v_nrm is not None: |
|
v_nrm_homo = torch.cat((self.v_nrm, torch.zeros(self.v_nrm.shape[0], 1, device=self.v_nrm.device)), dim=1) |
|
v_nrm_rotated = v_nrm_homo @ rotate_x.T |
|
self.v_nrm = v_nrm_rotated[:, :3] |
|
|
|
|
|
|
|
|
|
def load_mesh(filename, mtl_override=None): |
|
name, ext = os.path.splitext(filename) |
|
if ext == ".obj": |
|
return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) |
|
assert False, "Invalid mesh file extension" |
|
|
|
|
|
|
|
|
|
def aabb(mesh): |
|
return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values |
|
|
|
|
|
|
|
|
|
def compute_edges(attr_idx, return_inverse=False): |
|
with torch.no_grad(): |
|
|
|
all_edges = torch.cat(( |
|
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), |
|
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), |
|
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), |
|
), dim=-1).view(-1, 2) |
|
|
|
|
|
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) |
|
sorted_edges = torch.cat(( |
|
torch.gather(all_edges, 1, order), |
|
torch.gather(all_edges, 1, 1 - order) |
|
), dim=-1) |
|
|
|
|
|
return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) |
|
|
|
|
|
|
|
|
|
def compute_edge_to_face_mapping(attr_idx, return_inverse=False): |
|
with torch.no_grad(): |
|
|
|
|
|
all_edges = torch.cat(( |
|
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), |
|
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), |
|
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), |
|
), dim=-1).view(-1, 2) |
|
|
|
|
|
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) |
|
sorted_edges = torch.cat(( |
|
torch.gather(all_edges, 1, order), |
|
torch.gather(all_edges, 1, 1 - order) |
|
), dim=-1) |
|
|
|
|
|
unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) |
|
|
|
tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() |
|
|
|
tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() |
|
|
|
|
|
mask0 = order[:,0] == 0 |
|
mask1 = order[:,0] == 1 |
|
tris_per_edge[idx_map[mask0], 0] = tris[mask0] |
|
tris_per_edge[idx_map[mask1], 1] = tris[mask1] |
|
|
|
return tris_per_edge |
|
|
|
|
|
|
|
|
|
def unit_size(mesh): |
|
with torch.no_grad(): |
|
vmin, vmax = aabb(mesh) |
|
scale = 2 / torch.max(vmax - vmin).item() |
|
v_pos = mesh.v_pos - (vmax + vmin) / 2 |
|
v_pos = v_pos * scale |
|
|
|
return Mesh(v_pos, base=mesh) |
|
|
|
|
|
|
|
|
|
def center_by_reference(base_mesh, ref_aabb, scale): |
|
center = (ref_aabb[0] + ref_aabb[1]) * 0.5 |
|
scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() |
|
v_pos = (base_mesh.v_pos - center[None, ...]) * scale |
|
return Mesh(v_pos, base=base_mesh) |
|
|
|
|
|
|
|
|
|
def auto_normals(imesh): |
|
|
|
i0 = imesh.t_pos_idx[:, 0] |
|
i1 = imesh.t_pos_idx[:, 1] |
|
i2 = imesh.t_pos_idx[:, 2] |
|
|
|
v0 = imesh.v_pos[i0, :] |
|
v1 = imesh.v_pos[i1, :] |
|
v2 = imesh.v_pos[i2, :] |
|
|
|
face_normals = torch.cross(v1 - v0, v2 - v0) |
|
|
|
|
|
v_nrm = torch.zeros_like(imesh.v_pos) |
|
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) |
|
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) |
|
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) |
|
|
|
|
|
v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) |
|
v_nrm = util.safe_normalize(v_nrm) |
|
|
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(v_nrm)) |
|
|
|
return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) |
|
|
|
|
|
|
|
|
|
|
|
def compute_tangents(imesh): |
|
vn_idx = [None] * 3 |
|
pos = [None] * 3 |
|
tex = [None] * 3 |
|
for i in range(0,3): |
|
pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]] |
|
tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]] |
|
vn_idx[i] = imesh.t_nrm_idx[:, i] |
|
|
|
tangents = torch.zeros_like(imesh.v_nrm) |
|
|
|
|
|
uve1 = tex[1] - tex[0] |
|
uve2 = tex[2] - tex[0] |
|
pe1 = pos[1] - pos[0] |
|
pe2 = pos[2] - pos[0] |
|
|
|
nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]) |
|
denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]) |
|
|
|
|
|
tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) |
|
|
|
|
|
for i in range(0,3): |
|
idx = vn_idx[i][:, None].repeat(1,3) |
|
tangents.scatter_add_(0, idx, tang) |
|
|
|
|
|
tangents = util.safe_normalize(tangents) |
|
tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) |
|
|
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(tangents)) |
|
|
|
return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh) |
|
|