PRM / src /utils /render.py
JiantaoLin
new
2fe3da0
raw
history blame
16.3 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import nvdiffrast.torch as dr
from . import render_utils
from src.models.geometry.render import renderutils as ru
import numpy as np
from PIL import Image
import torchvision
# ==============================================================================================
# Helper functions
# ==============================================================================================
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')
def get_mip(roughness):
return torch.where(roughness < 1.0
, (torch.clamp(roughness, 0.04, 1.0) - 0.04) / (1.0 - 0.04) * (6 - 2)
, (torch.clamp(roughness, 1.0, 1.0) - 1.0) / (1.0 - 1.0) + 6 - 2)
def shade_with_env(gb_pos, gb_normal, kd, metallic, roughness, view_pos, run_n_view, env, metallic_gt, roughness_gt, use_material_gt=True, gt_render=False):
#mask = mask[..., 0]
view_pos = view_pos.expand(-1, gb_pos.shape[1], gb_pos.shape[2], -1) #.reshape(1, 512, 10240, 3)
wo = render_utils.safe_normalize(view_pos - gb_pos)
spec_col = (1.0 - metallic_gt)*0.04 + kd * metallic_gt
diff_col = kd * (1.0 - metallic_gt)
nrmvec = gb_normal
reflvec = render_utils.safe_normalize(render_utils.reflect(wo, nrmvec))
prb_rendered_list = []
pbr_specular_light_list = []
pbr_diffuse_light_list = []
for i in range(run_n_view):
specular_light, diffuse_light = env[i]
diffuse_light = diffuse_light.cuda()
specular_light_new = []
for split_specular_light in specular_light:
specular_light_new.append(split_specular_light.cuda())
specular_light = specular_light_new
shaded_col = torch.ones((gb_pos.shape[1], gb_pos.shape[2], 3)).cuda()
diffuse = dr.texture(diffuse_light[None, ...], nrmvec[i,:,:,:][None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
diffuse_comp = diffuse * diff_col[i,:,:,:][None, ...]
# Lookup FG term from lookup texture
NdotV = torch.clamp(render_utils.dot(wo[i,:,:,:], nrmvec[i,:,:,:]), min=1e-4)
fg_uv = torch.cat((NdotV, roughness_gt[i,:,:,:]), dim=-1)
_FG_LUT = torch.as_tensor(np.fromfile('src/data/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
fg_lookup = dr.texture(_FG_LUT, fg_uv[None, ...], filter_mode='linear', boundary_mode='clamp')
miplevel = get_mip(roughness_gt[i,:,:,:])
miplevel = miplevel[None, ...]
spec = dr.texture(specular_light[0][None, ...], reflvec[i,:,:,:][None, ...].contiguous(), mip=list(m[None, ...] for m in specular_light[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')
# Compute aggregate lighting
reflectance = spec_col[i,:,:,:][None, ...] * fg_lookup[...,0:1] + fg_lookup[...,1:2]
specular_comp = spec * reflectance
shaded_col = (specular_comp[0] + diffuse_comp[0])
prb_rendered_list.append(shaded_col)
pbr_specular_light_list.append(spec[0])
pbr_diffuse_light_list.append(diffuse[0])
shaded_col_all = torch.stack(prb_rendered_list, dim=0)
pbr_specular_light = torch.stack(pbr_specular_light_list, dim=0)
pbr_diffuse_light = torch.stack(pbr_diffuse_light_list, dim=0)
shaded_col_all = render_utils.rgb_to_srgb(shaded_col_all).clamp(0.,1.)
pbr_specular_light = render_utils.rgb_to_srgb(pbr_specular_light).clamp(0.,1.)
pbr_diffuse_light = render_utils.rgb_to_srgb(pbr_diffuse_light).clamp(0.,1.)
return shaded_col_all, pbr_specular_light, pbr_diffuse_light
# ==============================================================================================
# pixel shader
# ==============================================================================================
def shade(
gb_pos,
gb_geometric_normal,
gb_normal,
gb_tangent,
gb_texc,
gb_texc_deriv,
view_pos,
env,
planes,
kd_fn,
materials,
material,
mask,
gt_render,
gt_albedo_map=None,
):
################################################################################
# Texture lookups
################################################################################
perturbed_nrm = None
resolution = gb_pos.shape[1]
N_views = view_pos.shape[0]
if planes is None:
kd = material['kd'].sample(gb_texc, gb_texc_deriv)
matellic_gt, roughness_gt = (materials[0] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda(), (materials[1] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda()
matellic, roughness = None, None
else:
# predict kd with MLP and interpolated feature
gb_pos_interp, mask = [gb_pos], [mask]
gb_pos_interp = [torch.cat([pos[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for pos in gb_pos_interp]
mask = [torch.cat([ma[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for ma in mask]
# gt_albedo_map
if gt_albedo_map is not None:
kd = gt_albedo_map[0].permute(0,2,3,1)
matellic, roughness = None, None
else:
kd, matellic, roughness = kd_fn( planes[None,...], gb_pos_interp, mask[0])
kd = torch.cat( [torch.cat([kd[i:i + 1, :, resolution * i_view: resolution * (i_view + 1)]for i_view in range(N_views)], dim=0) for i in range(len(kd))], dim=0)
matellic_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32)
roughness_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32)
matellic_val = [x[0] for x in materials]
roughness_val = [y[1] for y in materials]
for i in range(len(matellic_gt)):
matellic_gt[i, :, :, 0].fill_(matellic_val[i])
roughness_gt[i, :, :, 0].fill_(roughness_val[i])
matellic_gt = matellic_gt.cuda()
roughness_gt = roughness_gt.cuda()
# Separate kd into alpha and color, default alpha = 1
alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1])
kd = kd[..., 0:3].clamp(0., 1.)
################################################################################
# Normal perturbation & normal bend
################################################################################
#if 'no_perturbed_nrm' in material and material['no_perturbed_nrm']:
perturbed_nrm = None
gb_normal_ = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True)
################################################################################
# Evaluate BSDF
################################################################################
shaded_col, spec_light, diff_light = shade_with_env(gb_pos, gb_normal_, kd, matellic, roughness, view_pos, N_views, env, matellic_gt, roughness_gt, use_material_gt=True, gt_render=gt_render)
buffers = {
'shaded' : torch.cat((shaded_col, alpha), dim=-1),
'spec_light': torch.cat((spec_light, alpha), dim=-1),
'diff_light': torch.cat((diff_light, alpha), dim=-1),
'gb_normal' : torch.cat((gb_normal_, alpha), dim=-1),
'normal' : torch.cat((gb_normal, alpha), dim=-1),
'albedo' : torch.cat((kd, alpha), dim=-1),
}
return buffers
# ==============================================================================================
# Render a depth slice of the mesh (scene), some limitations:
# - Single mesh
# - Single light
# - Single material
# ==============================================================================================
def render_layer(
rast,
rast_deriv,
mesh,
view_pos,
env,
planes,
kd_fn,
materials,
v_pos_clip,
resolution,
spp,
msaa,
gt_render,
gt_albedo_map=None,
):
full_res = [resolution[0]*spp, resolution[1]*spp]
################################################################################
# Rasterize
################################################################################
# Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution
if spp > 1 and msaa:
rast_out_s = render_utils.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest')
rast_out_deriv_s = render_utils.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp
else:
rast_out_s = rast
rast_out_deriv_s = rast_deriv
################################################################################
# Interpolate attributes
################################################################################
# Interpolate world space position
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int())
# Compute geometric normals. We need those because of bent normals trick (for bump mapping)
v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :]
v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :]
v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :]
face_normals = render_utils.safe_normalize(torch.cross(v1 - v0, v2 - v0))
face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3)
gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int())
# Compute tangent space
assert mesh.v_nrm is not None and mesh.v_tng is not None
gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int())
gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents
# Texture coordinate
assert mesh.v_tex is not None
gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s)
# render depth
depth = torch.linalg.norm(view_pos.expand_as(gb_pos) - gb_pos, dim=-1)
mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(mask.clone().contiguous(), rast, v_pos_clip,mesh.t_pos_idx.int())
################################################################################
# Shade
################################################################################
buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_texc, gb_texc_deriv, view_pos, env, planes, kd_fn, materials, mesh.material, mask, gt_render, gt_albedo_map=gt_albedo_map)
buffers['depth'] = torch.cat((depth.unsqueeze(-1).repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 )
buffers['mask'] = torch.cat((antialias_mask.repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 )
################################################################################
# Prepare output
################################################################################
# Scale back up to visibility resolution if using MSAA
if spp > 1 and msaa:
for key in buffers.keys():
buffers[key] = render_utils.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest')
# Return buffers
return buffers
# ==============================================================================================
# Render a depth peeled mesh (scene), some limitations:
# - Single mesh
# - Single light
# - Single material
# ==============================================================================================
def render_mesh(
ctx,
mesh,
mtx_in,
view_pos,
env,
planes,
kd_fn,
materials,
resolution,
spp = 1,
num_layers = 1,
msaa = False,
background = None,
gt_render = False,
gt_albedo_map = None,
):
def prepare_input_vector(x):
x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x
return x[:, None, None, :] if len(x.shape) == 2 else x
def composite_buffer(key, layers, background, antialias):
accum = background
for buffers, rast in reversed(layers):
alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:]
accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha)
if antialias:
accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx.int())
return accum
assert mesh.t_pos_idx.shape[0] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)"
assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1])
full_res = [resolution[0]*spp, resolution[1]*spp]
# Convert numpy arrays to torch tensors
mtx_in = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in
view_pos = prepare_input_vector(view_pos)
# clip space transform
v_pos_clip = ru.xfm_points(mesh.v_pos[None, ...], mtx_in)
# Render all layers front-to-back
layers = []
with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx.int(), full_res) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
layers += [(render_layer(rast, db, mesh, view_pos, env, planes, kd_fn, materials, v_pos_clip, resolution, spp, msaa, gt_render, gt_albedo_map), rast)]
# Setup background
if background is not None:
if spp > 1:
background = render_utils.scale_img_nhwc(background, full_res, mag='nearest', min='nearest')
background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1)
else:
background = torch.ones(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda')
background_black = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda')
# Composite layers front-to-back
out_buffers = {}
for key in layers[0][0].keys():
if key == 'mask':
accum = composite_buffer(key, layers, background_black, True)
else:
accum = composite_buffer(key, layers, background, True)
# Downscale to framebuffer resolution. Use avg pooling
out_buffers[key] = render_utils.avg_pool_nhwc(accum, spp) if spp > 1 else accum
return out_buffers
# ==============================================================================================
# Render UVs
# ==============================================================================================
def render_uv(ctx, mesh, resolution, mlp_texture):
# clip space transform
uv_clip = mesh.v_tex[None, ...]*2.0 - 1.0
# pad to four component coordinate
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1)
# rasterize
rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx.int(), resolution)
# Interpolate world space position
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast, mesh.t_pos_idx.int())
# Sample out textures from MLP
all_tex = mlp_texture.sample(gb_pos)
assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels"
perturbed_nrm = all_tex[..., -3:]
return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], render_utils.safe_normalize(perturbed_nrm)