|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import nvdiffrast.torch as dr |
|
|
|
from . import render_utils |
|
from src.models.geometry.render import renderutils as ru |
|
import numpy as np |
|
from PIL import Image |
|
import torchvision |
|
|
|
|
|
|
|
|
|
def interpolate(attr, rast, attr_idx, rast_db=None): |
|
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') |
|
|
|
|
|
def get_mip(roughness): |
|
return torch.where(roughness < 1.0 |
|
, (torch.clamp(roughness, 0.04, 1.0) - 0.04) / (1.0 - 0.04) * (6 - 2) |
|
, (torch.clamp(roughness, 1.0, 1.0) - 1.0) / (1.0 - 1.0) + 6 - 2) |
|
|
|
def shade_with_env(gb_pos, gb_normal, kd, metallic, roughness, view_pos, run_n_view, env, metallic_gt, roughness_gt, use_material_gt=True, gt_render=False): |
|
|
|
|
|
view_pos = view_pos.expand(-1, gb_pos.shape[1], gb_pos.shape[2], -1) |
|
|
|
wo = render_utils.safe_normalize(view_pos - gb_pos) |
|
|
|
spec_col = (1.0 - metallic_gt)*0.04 + kd * metallic_gt |
|
diff_col = kd * (1.0 - metallic_gt) |
|
|
|
|
|
nrmvec = gb_normal |
|
reflvec = render_utils.safe_normalize(render_utils.reflect(wo, nrmvec)) |
|
|
|
prb_rendered_list = [] |
|
pbr_specular_light_list = [] |
|
pbr_diffuse_light_list = [] |
|
for i in range(run_n_view): |
|
specular_light, diffuse_light = env[i] |
|
diffuse_light = diffuse_light.cuda() |
|
specular_light_new = [] |
|
for split_specular_light in specular_light: |
|
specular_light_new.append(split_specular_light.cuda()) |
|
specular_light = specular_light_new |
|
|
|
shaded_col = torch.ones((gb_pos.shape[1], gb_pos.shape[2], 3)).cuda() |
|
|
|
diffuse = dr.texture(diffuse_light[None, ...], nrmvec[i,:,:,:][None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') |
|
diffuse_comp = diffuse * diff_col[i,:,:,:][None, ...] |
|
|
|
|
|
NdotV = torch.clamp(render_utils.dot(wo[i,:,:,:], nrmvec[i,:,:,:]), min=1e-4) |
|
fg_uv = torch.cat((NdotV, roughness_gt[i,:,:,:]), dim=-1) |
|
_FG_LUT = torch.as_tensor(np.fromfile('src/data/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') |
|
fg_lookup = dr.texture(_FG_LUT, fg_uv[None, ...], filter_mode='linear', boundary_mode='clamp') |
|
|
|
miplevel = get_mip(roughness_gt[i,:,:,:]) |
|
miplevel = miplevel[None, ...] |
|
spec = dr.texture(specular_light[0][None, ...], reflvec[i,:,:,:][None, ...].contiguous(), mip=list(m[None, ...] for m in specular_light[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') |
|
|
|
|
|
reflectance = spec_col[i,:,:,:][None, ...] * fg_lookup[...,0:1] + fg_lookup[...,1:2] |
|
specular_comp = spec * reflectance |
|
shaded_col = (specular_comp[0] + diffuse_comp[0]) |
|
|
|
prb_rendered_list.append(shaded_col) |
|
pbr_specular_light_list.append(spec[0]) |
|
pbr_diffuse_light_list.append(diffuse[0]) |
|
|
|
shaded_col_all = torch.stack(prb_rendered_list, dim=0) |
|
pbr_specular_light = torch.stack(pbr_specular_light_list, dim=0) |
|
pbr_diffuse_light = torch.stack(pbr_diffuse_light_list, dim=0) |
|
|
|
shaded_col_all = render_utils.rgb_to_srgb(shaded_col_all).clamp(0.,1.) |
|
pbr_specular_light = render_utils.rgb_to_srgb(pbr_specular_light).clamp(0.,1.) |
|
pbr_diffuse_light = render_utils.rgb_to_srgb(pbr_diffuse_light).clamp(0.,1.) |
|
|
|
return shaded_col_all, pbr_specular_light, pbr_diffuse_light |
|
|
|
|
|
|
|
|
|
def shade( |
|
gb_pos, |
|
gb_geometric_normal, |
|
gb_normal, |
|
gb_tangent, |
|
gb_texc, |
|
gb_texc_deriv, |
|
view_pos, |
|
env, |
|
planes, |
|
kd_fn, |
|
materials, |
|
material, |
|
mask, |
|
gt_render, |
|
gt_albedo_map=None, |
|
): |
|
|
|
|
|
|
|
|
|
perturbed_nrm = None |
|
resolution = gb_pos.shape[1] |
|
N_views = view_pos.shape[0] |
|
|
|
if planes is None: |
|
kd = material['kd'].sample(gb_texc, gb_texc_deriv) |
|
matellic_gt, roughness_gt = (materials[0] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda(), (materials[1] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda() |
|
matellic, roughness = None, None |
|
else: |
|
|
|
gb_pos_interp, mask = [gb_pos], [mask] |
|
gb_pos_interp = [torch.cat([pos[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for pos in gb_pos_interp] |
|
mask = [torch.cat([ma[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for ma in mask] |
|
|
|
if gt_albedo_map is not None: |
|
kd = gt_albedo_map[0].permute(0,2,3,1) |
|
matellic, roughness = None, None |
|
else: |
|
kd, matellic, roughness = kd_fn( planes[None,...], gb_pos_interp, mask[0]) |
|
kd = torch.cat( [torch.cat([kd[i:i + 1, :, resolution * i_view: resolution * (i_view + 1)]for i_view in range(N_views)], dim=0) for i in range(len(kd))], dim=0) |
|
|
|
matellic_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32) |
|
roughness_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32) |
|
|
|
matellic_val = [x[0] for x in materials] |
|
roughness_val = [y[1] for y in materials] |
|
|
|
for i in range(len(matellic_gt)): |
|
matellic_gt[i, :, :, 0].fill_(matellic_val[i]) |
|
roughness_gt[i, :, :, 0].fill_(roughness_val[i]) |
|
|
|
matellic_gt = matellic_gt.cuda() |
|
roughness_gt = roughness_gt.cuda() |
|
|
|
|
|
alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) |
|
kd = kd[..., 0:3].clamp(0., 1.) |
|
|
|
|
|
|
|
|
|
perturbed_nrm = None |
|
|
|
gb_normal_ = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True) |
|
|
|
|
|
|
|
|
|
|
|
shaded_col, spec_light, diff_light = shade_with_env(gb_pos, gb_normal_, kd, matellic, roughness, view_pos, N_views, env, matellic_gt, roughness_gt, use_material_gt=True, gt_render=gt_render) |
|
|
|
buffers = { |
|
'shaded' : torch.cat((shaded_col, alpha), dim=-1), |
|
'spec_light': torch.cat((spec_light, alpha), dim=-1), |
|
'diff_light': torch.cat((diff_light, alpha), dim=-1), |
|
'gb_normal' : torch.cat((gb_normal_, alpha), dim=-1), |
|
'normal' : torch.cat((gb_normal, alpha), dim=-1), |
|
'albedo' : torch.cat((kd, alpha), dim=-1), |
|
} |
|
return buffers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def render_layer( |
|
rast, |
|
rast_deriv, |
|
mesh, |
|
view_pos, |
|
env, |
|
planes, |
|
kd_fn, |
|
materials, |
|
v_pos_clip, |
|
resolution, |
|
spp, |
|
msaa, |
|
gt_render, |
|
gt_albedo_map=None, |
|
): |
|
|
|
full_res = [resolution[0]*spp, resolution[1]*spp] |
|
|
|
|
|
|
|
|
|
|
|
|
|
if spp > 1 and msaa: |
|
rast_out_s = render_utils.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest') |
|
rast_out_deriv_s = render_utils.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp |
|
else: |
|
rast_out_s = rast |
|
rast_out_deriv_s = rast_deriv |
|
|
|
|
|
|
|
|
|
|
|
|
|
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int()) |
|
|
|
|
|
v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :] |
|
v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :] |
|
v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :] |
|
face_normals = render_utils.safe_normalize(torch.cross(v1 - v0, v2 - v0)) |
|
face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) |
|
gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int()) |
|
|
|
|
|
assert mesh.v_nrm is not None and mesh.v_tng is not None |
|
gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int()) |
|
gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) |
|
|
|
|
|
assert mesh.v_tex is not None |
|
gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s) |
|
|
|
|
|
depth = torch.linalg.norm(view_pos.expand_as(gb_pos) - gb_pos, dim=-1) |
|
|
|
mask = torch.clamp(rast[..., -1:], 0, 1) |
|
antialias_mask = dr.antialias(mask.clone().contiguous(), rast, v_pos_clip,mesh.t_pos_idx.int()) |
|
|
|
|
|
|
|
|
|
buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_texc, gb_texc_deriv, view_pos, env, planes, kd_fn, materials, mesh.material, mask, gt_render, gt_albedo_map=gt_albedo_map) |
|
buffers['depth'] = torch.cat((depth.unsqueeze(-1).repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 ) |
|
buffers['mask'] = torch.cat((antialias_mask.repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 ) |
|
|
|
|
|
|
|
|
|
|
|
if spp > 1 and msaa: |
|
for key in buffers.keys(): |
|
buffers[key] = render_utils.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest') |
|
|
|
|
|
return buffers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def render_mesh( |
|
ctx, |
|
mesh, |
|
mtx_in, |
|
view_pos, |
|
env, |
|
planes, |
|
kd_fn, |
|
materials, |
|
resolution, |
|
spp = 1, |
|
num_layers = 1, |
|
msaa = False, |
|
background = None, |
|
gt_render = False, |
|
gt_albedo_map = None, |
|
): |
|
def prepare_input_vector(x): |
|
x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x |
|
return x[:, None, None, :] if len(x.shape) == 2 else x |
|
|
|
def composite_buffer(key, layers, background, antialias): |
|
accum = background |
|
for buffers, rast in reversed(layers): |
|
alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:] |
|
accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha) |
|
if antialias: |
|
accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx.int()) |
|
return accum |
|
|
|
assert mesh.t_pos_idx.shape[0] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)" |
|
assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1]) |
|
|
|
full_res = [resolution[0]*spp, resolution[1]*spp] |
|
|
|
|
|
mtx_in = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in |
|
view_pos = prepare_input_vector(view_pos) |
|
|
|
|
|
v_pos_clip = ru.xfm_points(mesh.v_pos[None, ...], mtx_in) |
|
|
|
|
|
layers = [] |
|
with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx.int(), full_res) as peeler: |
|
for _ in range(num_layers): |
|
rast, db = peeler.rasterize_next_layer() |
|
layers += [(render_layer(rast, db, mesh, view_pos, env, planes, kd_fn, materials, v_pos_clip, resolution, spp, msaa, gt_render, gt_albedo_map), rast)] |
|
|
|
|
|
if background is not None: |
|
if spp > 1: |
|
background = render_utils.scale_img_nhwc(background, full_res, mag='nearest', min='nearest') |
|
background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1) |
|
else: |
|
background = torch.ones(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda') |
|
background_black = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda') |
|
|
|
|
|
out_buffers = {} |
|
|
|
for key in layers[0][0].keys(): |
|
if key == 'mask': |
|
accum = composite_buffer(key, layers, background_black, True) |
|
else: |
|
accum = composite_buffer(key, layers, background, True) |
|
|
|
|
|
out_buffers[key] = render_utils.avg_pool_nhwc(accum, spp) if spp > 1 else accum |
|
|
|
return out_buffers |
|
|
|
|
|
|
|
|
|
def render_uv(ctx, mesh, resolution, mlp_texture): |
|
|
|
|
|
uv_clip = mesh.v_tex[None, ...]*2.0 - 1.0 |
|
|
|
|
|
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1) |
|
|
|
|
|
rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx.int(), resolution) |
|
|
|
|
|
gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast, mesh.t_pos_idx.int()) |
|
|
|
|
|
all_tex = mlp_texture.sample(gb_pos) |
|
assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels" |
|
perturbed_nrm = all_tex[..., -3:] |
|
return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], render_utils.safe_normalize(perturbed_nrm) |
|
|