JiantaoLin
new
2fe3da0
raw
history blame
9.85 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
from . import obj
from . import util
######################################################################################
# Base mesh class
######################################################################################
class Mesh:
def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None):
self.v_pos = v_pos
self.v_nrm = v_nrm
self.v_tex = v_tex
self.v_tng = v_tng
self.t_pos_idx = t_pos_idx
self.t_nrm_idx = t_nrm_idx
self.t_tex_idx = t_tex_idx
self.t_tng_idx = t_tng_idx
self.material = material
if base is not None:
self.copy_none(base)
def copy_none(self, other):
if self.v_pos is None:
self.v_pos = other.v_pos
if self.t_pos_idx is None:
self.t_pos_idx = other.t_pos_idx
if self.v_nrm is None:
self.v_nrm = other.v_nrm
if self.t_nrm_idx is None:
self.t_nrm_idx = other.t_nrm_idx
if self.v_tex is None:
self.v_tex = other.v_tex
if self.t_tex_idx is None:
self.t_tex_idx = other.t_tex_idx
if self.v_tng is None:
self.v_tng = other.v_tng
if self.t_tng_idx is None:
self.t_tng_idx = other.t_tng_idx
if self.material is None:
self.material = other.material
def clone(self):
out = Mesh(base=self)
if out.v_pos is not None:
out.v_pos = out.v_pos.clone().detach()
if out.t_pos_idx is not None:
out.t_pos_idx = out.t_pos_idx.clone().detach()
if out.v_nrm is not None:
out.v_nrm = out.v_nrm.clone().detach()
if out.t_nrm_idx is not None:
out.t_nrm_idx = out.t_nrm_idx.clone().detach()
if out.v_tex is not None:
out.v_tex = out.v_tex.clone().detach()
if out.t_tex_idx is not None:
out.t_tex_idx = out.t_tex_idx.clone().detach()
if out.v_tng is not None:
out.v_tng = out.v_tng.clone().detach()
if out.t_tng_idx is not None:
out.t_tng_idx = out.t_tng_idx.clone().detach()
return out
######################################################################################
# Mesh loeading helper
######################################################################################
def load_mesh(filename, mtl_override=None):
name, ext = os.path.splitext(filename)
if ext == ".obj":
return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override)
assert False, "Invalid mesh file extension"
######################################################################################
# Compute AABB
######################################################################################
def aabb(mesh):
return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values
######################################################################################
# Compute unique edge list from attribute/vertex index list
######################################################################################
def compute_edges(attr_idx, return_inverse=False):
with torch.no_grad():
# Create all edges, packed by triangle
all_edges = torch.cat((
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1),
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1),
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1),
), dim=-1).view(-1, 2)
# Swap edge order so min index is always first
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1)
sorted_edges = torch.cat((
torch.gather(all_edges, 1, order),
torch.gather(all_edges, 1, 1 - order)
), dim=-1)
# Eliminate duplicates and return inverse mapping
return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse)
######################################################################################
# Compute unique edge to face mapping from attribute/vertex index list
######################################################################################
def compute_edge_to_face_mapping(attr_idx, return_inverse=False):
with torch.no_grad():
# Get unique edges
# Create all edges, packed by triangle
all_edges = torch.cat((
torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1),
torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1),
torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1),
), dim=-1).view(-1, 2)
# Swap edge order so min index is always first
order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1)
sorted_edges = torch.cat((
torch.gather(all_edges, 1, order),
torch.gather(all_edges, 1, 1 - order)
), dim=-1)
# Elliminate duplicates and return inverse mapping
unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True)
tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda()
tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda()
# Compute edge to face table
mask0 = order[:,0] == 0
mask1 = order[:,0] == 1
tris_per_edge[idx_map[mask0], 0] = tris[mask0]
tris_per_edge[idx_map[mask1], 1] = tris[mask1]
return tris_per_edge
######################################################################################
# Align base mesh to reference mesh:move & rescale to match bounding boxes.
######################################################################################
def unit_size(mesh):
with torch.no_grad():
vmin, vmax = aabb(mesh)
scale = 2 / torch.max(vmax - vmin).item()
v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin
v_pos = v_pos * scale # Rescale to unit size
return Mesh(v_pos, base=mesh)
######################################################################################
# Center & scale mesh for rendering
######################################################################################
def center_by_reference(base_mesh, ref_aabb, scale):
center = (ref_aabb[0] + ref_aabb[1]) * 0.5
scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item()
v_pos = (base_mesh.v_pos - center[None, ...]) * scale
return Mesh(v_pos, base=base_mesh)
######################################################################################
# Simple smooth vertex normal computation
######################################################################################
def auto_normals(imesh):
i0 = imesh.t_pos_idx[:, 0]
i1 = imesh.t_pos_idx[:, 1]
i2 = imesh.t_pos_idx[:, 2]
v0 = imesh.v_pos[i0, :]
v1 = imesh.v_pos[i1, :]
v2 = imesh.v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(imesh.v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
v_nrm = util.safe_normalize(v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_nrm))
return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh)
######################################################################################
# Compute tangent space from texture map coordinates
# Follows http://www.mikktspace.com/ conventions
######################################################################################
def compute_tangents(imesh):
vn_idx = [None] * 3
pos = [None] * 3
tex = [None] * 3
for i in range(0,3):
pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]]
tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]]
vn_idx[i] = imesh.t_nrm_idx[:, i]
tangents = torch.zeros_like(imesh.v_nrm)
# Compute tangent space for each triangle
uve1 = tex[1] - tex[0]
uve2 = tex[2] - tex[0]
pe1 = pos[1] - pos[0]
pe2 = pos[2] - pos[0]
nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2])
denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1])
# Avoid division by zero for degenerated texture coordinates
tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6))
# Update all 3 vertices
for i in range(0,3):
idx = vn_idx[i][:, None].repeat(1,3)
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
# Normalize and make sure tangent is perpendicular to normal
tangents = util.safe_normalize(tangents)
tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(tangents))
return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh)