PRM / run.py
JiantaoLin
new
2fe3da0
raw
history blame
14.2 kB
import os
import argparse
import glm
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
import torchvision
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from src.data.objaverse import load_mipmap
from src.utils import render_utils
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
center_looking_at_camera_pose,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_obj_with_mtl
from src.utils.infer_util import remove_background, resize_foreground, save_video
def str_to_tuple(arg_str):
try:
return eval(arg_str)
except:
raise argparse.ArgumentTypeError("Tuple argument must be in the format (x, y)")
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50):
"""
Get the rendering camera parameters.
"""
train_res = [512, 512]
cam_near_far = [0.1, 1000.0]
fovy = np.deg2rad(fov)
proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
all_mv = []
all_mvp = []
all_campos = []
if isinstance(elevation, tuple):
elevation_0 = np.deg2rad(elevation[0])
elevation_1 = np.deg2rad(elevation[1])
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_0)
x = radius * np.sin(azimuth) * np.sin(elevation_0)
y = radius * np.cos(elevation_0)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_1)
x = radius * np.sin(azimuth) * np.sin(elevation_1)
y = radius * np.cos(elevation_1)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
else:
# elevation = 90 - elevation
for i in range(M):
azimuth = 2 * np.pi * i / M
z = radius * np.cos(azimuth) * np.sin(elevation)
x = radius * np.sin(azimuth) * np.sin(elevation)
y = radius * np.cos(elevation)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
return all_mv, all_mvp, all_campos
def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False):
"""
Render frames from triplanes.
"""
frames = []
albedos = []
pbr_spec_lights = []
pbr_diffuse_lights = []
normals = []
alphas = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if is_flexicubes:
out = model.forward_geometry(
planes,
render_cameras[:, i:i+chunk_size],
camera_pos[:, i:i+chunk_size],
[[env]*chunk_size],
[[materials]*chunk_size],
render_size=render_size,
)
frame = out['pbr_img']
albedo = out['albedo']
pbr_spec_light = out['pbr_spec_light']
pbr_diffuse_light = out['pbr_diffuse_light']
normal = out['normal']
alpha = out['mask']
else:
frame = model.forward_synthesizer(
planes,
render_cameras[i],
render_size=render_size,
)['images_rgb']
frames.append(frame)
albedos.append(albedo)
pbr_spec_lights.append(pbr_spec_light)
pbr_diffuse_lights.append(pbr_diffuse_light)
normals.append(normal)
alphas.append(alpha)
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
alphas = torch.cat(alphas, dim=1)[0]
albedos = torch.cat(albedos, dim=1)[0]
pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0]
pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0]
normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3]
return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas
###############################################################################
# Arguments.
###############################################################################
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('input_path', type=str, help='Path to input image or directory.')
parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.')
parser.add_argument('--model_ckpt_path', type=str, default="", help='Output directory.')
parser.add_argument('--diffusion_steps', type=int, default=100, help='Denoising Sampling steps.')
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.')
parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.')
parser.add_argument('--materials', type=str_to_tuple, default=(1.0, 0.1), help=' metallic and roughness')
parser.add_argument('--distance', type=float, default=4.5, help='Render distance.')
parser.add_argument('--fov', type=float, default=30, help='Render distance.')
parser.add_argument('--env_path', type=str, default='data/env_mipmap/2', help='environment map')
parser.add_argument('--view', type=int, default=6, choices=[4, 6], help='Number of input views.')
parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.')
parser.add_argument('--export_texmap', action='store_true', help='Export a mesh with texture map.')
parser.add_argument('--save_video', action='store_true', help='Save a circular-view video.')
args = parser.parse_args()
seed_everything(args.seed)
###############################################################################
# Stage 0: Configuration.
###############################################################################
config = OmegaConf.load(args.config)
config_name = os.path.basename(args.config).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True
device = torch.device('cuda')
# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
print('Loading custom white-background unet ...')
if os.path.exists(infer_config.unet_path):
unet_ckpt_path = infer_config.unet_path
else:
unet_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
if os.path.exists(infer_config.model_path):
model_ckpt_path = infer_config.model_path
else:
model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()
# make output directories
image_path = os.path.join(args.output_path, config_name, 'images')
mesh_path = os.path.join(args.output_path, config_name, 'meshes')
video_path = os.path.join(args.output_path, config_name, 'videos')
os.makedirs(image_path, exist_ok=True)
os.makedirs(mesh_path, exist_ok=True)
os.makedirs(video_path, exist_ok=True)
# process input files
if os.path.isdir(args.input_path):
input_files = [
os.path.join(args.input_path, file)
for file in os.listdir(args.input_path)
if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp')
]
else:
input_files = [args.input_path]
print(f'Total number of input images: {len(input_files)}')
###############################################################################
# Stage 1: Multiview generation.
###############################################################################
rembg_session = None if args.no_rembg else rembg.new_session()
outputs = []
for idx, image_file in enumerate(input_files):
name = os.path.basename(image_file).split('.')[0]
print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...')
# remove background optionally
input_image = Image.open(image_file)
if not args.no_rembg:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
# sampling
output_image = pipeline(
input_image,
num_inference_steps=args.diffusion_steps,
).images[0]
print(f"Image saved to {os.path.join(image_path, f'{name}.png')}")
images = np.asarray(output_image, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
torchvision.utils.save_image(images, os.path.join(image_path, f'{name}.png'))
sample = {'name': name, 'images': images}
# delete pipeline to save memory
# del pipeline
###############################################################################
# Stage 2: Reconstruction.
###############################################################################
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2*args.scale, fov=30).to(device)
chunk_size = 20 if IS_FLEXICUBES else 1
# for idx, sample in enumerate(outputs):
name = sample['name']
print(f'[{idx+1}/{len(outputs)}] Creating {name} ...')
images = sample['images'].unsqueeze(0).to(device)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(mesh_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=args.export_texmap,
**infer_config,
)
if args.export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if args.save_video:
video_path_idx = os.path.join(video_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap(args.env_path)
materials = args.materials
all_mv, all_mvp, all_campos = get_render_cameras(
batch_size=1,
M=240,
radius=args.distance,
elevation=(90, 60.0),
is_flexicubes=IS_FLEXICUBES,
fov=args.fov
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=chunk_size,
is_flexicubes=IS_FLEXICUBES,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
# breakpoint()
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")