JiantaoLin
new
2fe3da0
raw
history blame
3.43 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import os
import sys
sys.path.insert(0, os.path.join(sys.path[0], '../..'))
import renderutils as ru
BATCH = 8
RES = 1024
DTYPE = torch.float32
torch.manual_seed(0)
def tonemap_srgb(f):
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f)
def l1(output, target):
x = torch.clamp(output, min=0, max=65535)
r = torch.clamp(target, min=0, max=65535)
x = tonemap_srgb(torch.log(x + 1))
r = tonemap_srgb(torch.log(r + 1))
return torch.nn.functional.l1_loss(x,r)
def relative_loss(name, ref, cuda):
ref = ref.float()
cuda = cuda.float()
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref)).item())
def test_xfm_points():
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
points_ref = points_cuda.clone().detach().requires_grad_(True)
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False)
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True)
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True)
ref_out = ru.xfm_points(points_ref, mtx_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref_out, target)
ref_loss.backward()
cuda_out = ru.xfm_points(points_cuda, mtx_cuda)
cuda_loss = torch.nn.MSELoss()(cuda_out, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
relative_loss("res:", ref_out, cuda_out)
relative_loss("points:", points_ref.grad, points_cuda.grad)
def test_xfm_vectors():
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
points_ref = points_cuda.clone().detach().requires_grad_(True)
points_cuda_p = points_cuda.clone().detach().requires_grad_(True)
points_ref_p = points_cuda.clone().detach().requires_grad_(True)
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False)
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True)
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True)
ref_out = ru.xfm_vectors(points_ref.contiguous(), mtx_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref_out, target[..., 0:3])
ref_loss.backward()
cuda_out = ru.xfm_vectors(points_cuda.contiguous(), mtx_cuda)
cuda_loss = torch.nn.MSELoss()(cuda_out, target[..., 0:3])
cuda_loss.backward()
ref_out_p = ru.xfm_points(points_ref_p.contiguous(), mtx_ref, use_python=True)
ref_loss_p = torch.nn.MSELoss()(ref_out_p, target)
ref_loss_p.backward()
cuda_out_p = ru.xfm_points(points_cuda_p.contiguous(), mtx_cuda)
cuda_loss_p = torch.nn.MSELoss()(cuda_out_p, target)
cuda_loss_p.backward()
print("-------------------------------------------------------------")
relative_loss("res:", ref_out, cuda_out)
relative_loss("points:", points_ref.grad, points_cuda.grad)
relative_loss("points_p:", points_ref_p.grad, points_cuda_p.grad)
test_xfm_points()
test_xfm_vectors()