|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
import os |
|
import sys |
|
sys.path.insert(0, os.path.join(sys.path[0], '../..')) |
|
import renderutils as ru |
|
|
|
BATCH = 8 |
|
RES = 1024 |
|
DTYPE = torch.float32 |
|
|
|
torch.manual_seed(0) |
|
|
|
def tonemap_srgb(f): |
|
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) |
|
|
|
def l1(output, target): |
|
x = torch.clamp(output, min=0, max=65535) |
|
r = torch.clamp(target, min=0, max=65535) |
|
x = tonemap_srgb(torch.log(x + 1)) |
|
r = tonemap_srgb(torch.log(r + 1)) |
|
return torch.nn.functional.l1_loss(x,r) |
|
|
|
def relative_loss(name, ref, cuda): |
|
ref = ref.float() |
|
cuda = cuda.float() |
|
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref)).item()) |
|
|
|
def test_xfm_points(): |
|
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) |
|
points_ref = points_cuda.clone().detach().requires_grad_(True) |
|
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) |
|
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) |
|
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) |
|
|
|
ref_out = ru.xfm_points(points_ref, mtx_ref, use_python=True) |
|
ref_loss = torch.nn.MSELoss()(ref_out, target) |
|
ref_loss.backward() |
|
|
|
cuda_out = ru.xfm_points(points_cuda, mtx_cuda) |
|
cuda_loss = torch.nn.MSELoss()(cuda_out, target) |
|
cuda_loss.backward() |
|
|
|
print("-------------------------------------------------------------") |
|
|
|
relative_loss("res:", ref_out, cuda_out) |
|
relative_loss("points:", points_ref.grad, points_cuda.grad) |
|
|
|
def test_xfm_vectors(): |
|
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) |
|
points_ref = points_cuda.clone().detach().requires_grad_(True) |
|
points_cuda_p = points_cuda.clone().detach().requires_grad_(True) |
|
points_ref_p = points_cuda.clone().detach().requires_grad_(True) |
|
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) |
|
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) |
|
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) |
|
|
|
ref_out = ru.xfm_vectors(points_ref.contiguous(), mtx_ref, use_python=True) |
|
ref_loss = torch.nn.MSELoss()(ref_out, target[..., 0:3]) |
|
ref_loss.backward() |
|
|
|
cuda_out = ru.xfm_vectors(points_cuda.contiguous(), mtx_cuda) |
|
cuda_loss = torch.nn.MSELoss()(cuda_out, target[..., 0:3]) |
|
cuda_loss.backward() |
|
|
|
ref_out_p = ru.xfm_points(points_ref_p.contiguous(), mtx_ref, use_python=True) |
|
ref_loss_p = torch.nn.MSELoss()(ref_out_p, target) |
|
ref_loss_p.backward() |
|
|
|
cuda_out_p = ru.xfm_points(points_cuda_p.contiguous(), mtx_cuda) |
|
cuda_loss_p = torch.nn.MSELoss()(cuda_out_p, target) |
|
cuda_loss_p.backward() |
|
|
|
print("-------------------------------------------------------------") |
|
|
|
relative_loss("res:", ref_out, cuda_out) |
|
relative_loss("points:", points_ref.grad, points_cuda.grad) |
|
relative_loss("points_p:", points_ref_p.grad, points_cuda_p.grad) |
|
|
|
test_xfm_points() |
|
test_xfm_vectors() |
|
|