PRM / src /models /geometry /rep_3d /flexicubes_geometry.py
LTT's picture
new
43258f9
raw
history blame
7.4 kB
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import numpy as np
import os
import nvdiffrast.torch as dr
from . import Geometry
from .flexicubes import FlexiCubes # replace later
from .dmtet import sdf_reg_loss_batch
from . import mesh
import torch.nn.functional as F
from src.utils import render
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] += ':/usr/local/cuda/bin'
os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda/lib64'
def get_center_boundary_index(grid_res, device):
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
center_indices = torch.nonzero(v.reshape(-1))
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
v[:2, ...] = True
v[-2:, ...] = True
v[:, :2, ...] = True
v[:, -2:, ...] = True
v[:, :, :2] = True
v[:, :, -2:] = True
boundary_indices = torch.nonzero(v.reshape(-1))
return center_indices, boundary_indices
###############################################################################
# Geometry interface
###############################################################################
class FlexiCubesGeometry(Geometry):
def __init__(
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
render_type='neural_render', args=None):
super(FlexiCubesGeometry, self).__init__()
self.grid_res = grid_res
self.device = device
self.args = args
self.fc = FlexiCubes(device, weight_scale=0.5)
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
if isinstance(scale, list):
self.verts[:, 0] = self.verts[:, 0] * scale[0]
self.verts[:, 1] = self.verts[:, 1] * scale[1]
self.verts[:, 2] = self.verts[:, 2] * scale[1]
else:
self.verts = self.verts * scale
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
self.all_edges = torch.unique(all_edges, dim=0)
# Parameters used for fix boundary sdf
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
self.renderer = renderer
self.render_type = render_type
self.ctx = dr.RasterizeCudaContext(device=device)
def getAABB(self):
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
@torch.no_grad()
def map_uv(self, face_gidx, max_idx):
N = int(np.ceil(np.sqrt((max_idx+1)//2)))
tex_y, tex_x = torch.meshgrid(
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"),
torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda")
)
pad = 0.9 / N
uvs = torch.stack([
tex_x , tex_y,
tex_x + pad, tex_y,
tex_x + pad, tex_y + pad,
tex_x , tex_y + pad
], dim=-1).view(-1, 2)
def _idx(tet_idx, N):
x = tet_idx % N
y = torch.div(tet_idx, N, rounding_mode='floor')
return y * N + x
tet_idx = _idx(torch.div(face_gidx, N, rounding_mode='floor'), N)
tri_idx = face_gidx % 2
uv_idx = torch.stack((
tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2
), dim = -1). view(-1, 3)
return uvs, uv_idx
def rotate_x(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_z(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, -s, 0, 0],
[ s, c, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(self, a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
if indices is None:
indices = self.indices
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
gamma_f=weight_n[:, 20], training=is_training
)
face_gidx = torch.arange(faces.shape[0], dtype=torch.long, device="cuda")
uvs, uv_idx = self.map_uv(face_gidx, faces.shape[0])
verts = verts @ self.rotate_x(np.pi / 2, device=verts.device)[:3,:3]
verts = verts @ self.rotate_y(np.pi / 2, device=verts.device)[:3,:3]
imesh = mesh.Mesh(verts, faces, v_tex=uvs, t_tex_idx=uv_idx)
imesh = mesh.auto_normals(imesh)
imesh = mesh.compute_tangents(imesh)
return verts, faces, v_reg_loss, imesh
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, mesh, camera_mv_bx4x4, camera_pos, env, planes, kd_fn, materials, resolution=256, hierarchical_mask=False, gt_albedo_map=None, gt_normal_map=None, gt_depth_map=None):
return_value = dict()
buffer_dict = render.render_mesh(self.ctx, mesh, camera_mv_bx4x4, camera_pos, env,
planes, kd_fn, materials, [resolution, resolution],
spp=1, num_layers=1, msaa=True, background=None, gt_albedo_map=gt_albedo_map)
return buffer_dict
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
v_list = []
f_list = []
n_batch = v_deformed_bxnx3.shape[0]
all_render_output = []
for i_batch in range(n_batch):
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
v_list.append(verts_nx3)
f_list.append(faces_fx3)
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
all_render_output.append(render_output)
# Concatenate all render output
return_keys = all_render_output[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in all_render_output]
return_value[k] = value
# We can do concatenation outside of the render
return return_value