|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
|
|
from . import util |
|
from . import texture |
|
|
|
|
|
|
|
|
|
|
|
class Material(torch.nn.Module): |
|
def __init__(self, mat_dict): |
|
super(Material, self).__init__() |
|
self.mat_keys = set() |
|
for key in mat_dict.keys(): |
|
self.mat_keys.add(key) |
|
self[key] = mat_dict[key] |
|
|
|
def __contains__(self, key): |
|
return hasattr(self, key) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, val): |
|
self.mat_keys.add(key) |
|
setattr(self, key, val) |
|
|
|
def __delitem__(self, key): |
|
self.mat_keys.remove(key) |
|
delattr(self, key) |
|
|
|
def keys(self): |
|
return self.mat_keys |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def load_mtl(fn, clear_ks=True): |
|
import re |
|
mtl_path = os.path.dirname(fn) |
|
|
|
|
|
with open(fn, 'r') as f: |
|
lines = f.readlines() |
|
|
|
|
|
materials = [] |
|
for line in lines: |
|
split_line = re.split(' +|\t+|\n+', line.strip()) |
|
prefix = split_line[0].lower() |
|
data = split_line[1:] |
|
if 'newmtl' in prefix: |
|
material = Material({'name' : data[0]}) |
|
materials += [material] |
|
elif materials: |
|
if 'bsdf' in prefix or 'map_kd' in prefix or 'map_ks' in prefix or 'bump' in prefix: |
|
material[prefix] = data[0] |
|
else: |
|
material[prefix] = torch.tensor(tuple(float(d) for d in data), dtype=torch.float32, device='cuda') |
|
|
|
|
|
for mat in materials: |
|
if not 'bsdf' in mat: |
|
mat['bsdf'] = 'pbr' |
|
|
|
if 'map_kd' in mat: |
|
mat['kd'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_kd'])) |
|
else: |
|
mat['kd'] = texture.Texture2D(mat['kd']) |
|
|
|
if 'map_ks' in mat: |
|
mat['ks'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_ks']), channels=3) |
|
else: |
|
mat['ks'] = texture.Texture2D(mat['ks']) |
|
|
|
if 'bump' in mat: |
|
mat['normal'] = texture.load_texture2D(os.path.join(mtl_path, mat['bump']), lambda_fn=lambda x: x * 2 - 1, channels=3) |
|
|
|
|
|
mat['kd'] = texture.srgb_to_rgb(mat['kd']) |
|
|
|
if clear_ks: |
|
|
|
for mip in mat['ks'].getMips(): |
|
mip[..., 0] = 0.0 |
|
|
|
return materials |
|
|
|
@torch.no_grad() |
|
def save_mtl(fn, material): |
|
folder = os.path.dirname(fn) |
|
with open(fn, "w") as f: |
|
f.write('newmtl defaultMat\n') |
|
if material is not None: |
|
f.write('bsdf %s\n' % material['bsdf']) |
|
if 'kd' in material.keys(): |
|
f.write('map_Kd texture_kd.png\n') |
|
texture.save_texture2D(os.path.join(folder, 'texture_kd.png'), texture.rgb_to_srgb(material['kd'])) |
|
if 'ks' in material.keys(): |
|
f.write('map_Ks texture_ks.png\n') |
|
texture.save_texture2D(os.path.join(folder, 'texture_ks.png'), material['ks']) |
|
if 'normal' in material.keys(): |
|
f.write('bump texture_n.png\n') |
|
texture.save_texture2D(os.path.join(folder, 'texture_n.png'), material['normal'], lambda_fn=lambda x:(util.safe_normalize(x)+1)*0.5) |
|
else: |
|
f.write('Kd 1 1 1\n') |
|
f.write('Ks 0 0 0\n') |
|
f.write('Ka 0 0 0\n') |
|
f.write('Tf 1 1 1\n') |
|
f.write('Ni 1\n') |
|
f.write('Ns 0\n') |
|
|
|
|
|
|
|
|
|
|
|
def _upscale_replicate(x, full_res): |
|
x = x.permute(0, 3, 1, 2) |
|
x = torch.nn.functional.pad(x, (0, full_res[1] - x.shape[3], 0, full_res[0] - x.shape[2]), 'replicate') |
|
return x.permute(0, 2, 3, 1).contiguous() |
|
|
|
def merge_materials(materials, texcoords, tfaces, mfaces): |
|
assert len(materials) > 0 |
|
for mat in materials: |
|
assert mat['bsdf'] == materials[0]['bsdf'], "All materials must have the same BSDF (uber shader)" |
|
assert ('normal' in mat) is ('normal' in materials[0]), "All materials must have either normal map enabled or disabled" |
|
|
|
uber_material = Material({ |
|
'name' : 'uber_material', |
|
'bsdf' : materials[0]['bsdf'], |
|
}) |
|
|
|
textures = ['kd', 'ks', 'normal'] |
|
|
|
|
|
max_res = None |
|
for mat in materials: |
|
for tex in textures: |
|
tex_res = np.array(mat[tex].getRes()) if tex in mat else np.array([1, 1]) |
|
max_res = np.maximum(max_res, tex_res) if max_res is not None else tex_res |
|
|
|
|
|
full_res = 2**np.ceil(np.log2(max_res * np.array([1, len(materials)]))).astype(np.int) |
|
|
|
|
|
for tex in textures: |
|
if tex in materials[0]: |
|
tex_data = torch.cat(tuple(util.scale_img_nhwc(mat[tex].data, tuple(max_res)) for mat in materials), dim=2) |
|
tex_data = _upscale_replicate(tex_data, full_res) |
|
uber_material[tex] = texture.Texture2D(tex_data) |
|
|
|
|
|
s_coeff = [full_res[0] / max_res[0], full_res[1] / max_res[1]] |
|
|
|
|
|
new_tverts = {} |
|
new_tverts_data = [] |
|
for fi in range(len(tfaces)): |
|
matIdx = mfaces[fi] |
|
for vi in range(3): |
|
ti = tfaces[fi][vi] |
|
if not (ti in new_tverts): |
|
new_tverts[ti] = {} |
|
if not (matIdx in new_tverts[ti]): |
|
new_tverts_data.append([(matIdx + texcoords[ti][0]) / s_coeff[1], texcoords[ti][1] / s_coeff[0]]) |
|
new_tverts[ti][matIdx] = len(new_tverts_data) - 1 |
|
tfaces[fi][vi] = new_tverts[ti][matIdx] |
|
|
|
return uber_material, new_tverts_data, tfaces |
|
|
|
|