|
import os |
|
import time |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import gc |
|
from torchvision.transforms import v2 |
|
from torchvision.utils import make_grid, save_image |
|
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity |
|
import pytorch_lightning as pl |
|
from einops import rearrange, repeat |
|
from src.utils.camera_util import FOV_to_intrinsics |
|
from src.utils.material import Material |
|
from src.utils.train_util import instantiate_from_config |
|
import nvdiffrast.torch as dr |
|
from src.utils import render |
|
from src.utils.mesh import Mesh, compute_tangents |
|
os.environ['PYOPENGL_PLATFORM'] = 'egl' |
|
|
|
|
|
GLCTX = [None] * torch.cuda.device_count() |
|
|
|
def initialize_extension(gpu_id): |
|
global GLCTX |
|
if GLCTX[gpu_id] is None: |
|
print(f"Initializing extension module renderutils_plugin on GPU {gpu_id}...") |
|
torch.cuda.set_device(gpu_id) |
|
GLCTX[gpu_id] = dr.RasterizeCudaContext() |
|
return GLCTX[gpu_id] |
|
|
|
|
|
def sdf_reg_loss_batch(sdf, all_edges): |
|
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) |
|
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) |
|
sdf_f1x6x2 = sdf_f1x6x2[mask] |
|
sdf_diff = F.binary_cross_entropy_with_logits( |
|
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ |
|
F.binary_cross_entropy_with_logits( |
|
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) |
|
return sdf_diff |
|
|
|
def rotate_x(a, device=None): |
|
s, c = np.sin(a), np.cos(a) |
|
return torch.tensor([[1, 0, 0, 0], |
|
[0, c,-s, 0], |
|
[0, s, c, 0], |
|
[0, 0, 0, 1]], dtype=torch.float32, device=device) |
|
|
|
|
|
def convert_to_white_bg(image, write_bg=True): |
|
alpha = image[:, :, 3:] |
|
if write_bg: |
|
return image[:, :, :3] * alpha + 1. * (1 - alpha) |
|
else: |
|
return image[:, :, :3] * alpha |
|
|
|
|
|
class MVRecon(pl.LightningModule): |
|
def __init__( |
|
self, |
|
lrm_generator_config, |
|
input_size=256, |
|
render_size=512, |
|
init_ckpt=None, |
|
use_tv_loss=True, |
|
mesh_save_root="Objaverse_highQuality", |
|
sample_points=None, |
|
use_gt_albedo=False, |
|
): |
|
super(MVRecon, self).__init__() |
|
|
|
self.use_gt_albedo = use_gt_albedo |
|
self.use_tv_loss = use_tv_loss |
|
self.input_size = input_size |
|
self.render_size = render_size |
|
self.mesh_save_root = mesh_save_root |
|
self.sample_points = sample_points |
|
|
|
self.lrm_generator = instantiate_from_config(lrm_generator_config) |
|
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') |
|
|
|
if init_ckpt is not None: |
|
sd = torch.load(init_ckpt, map_location='cpu')['state_dict'] |
|
sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')} |
|
sd_fc = {} |
|
for k, v in sd.items(): |
|
if k.startswith('lrm_generator.synthesizer.decoder.net.'): |
|
if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): |
|
|
|
|
|
|
|
if 'weight' in k: |
|
sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1] |
|
else: |
|
sd_fc[k.replace('net.', 'net_sdf.')] = 10.0 - v[0:1] |
|
sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4] |
|
else: |
|
sd_fc[k.replace('net.', 'net_sdf.')] = v |
|
sd_fc[k.replace('net.', 'net_rgb.')] = v |
|
else: |
|
sd_fc[k] = v |
|
sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()} |
|
|
|
self.lrm_generator.load_state_dict(sd_fc, strict=False) |
|
print(f'Loaded weights from {init_ckpt}') |
|
|
|
self.validation_step_outputs = [] |
|
|
|
def on_fit_start(self): |
|
device = torch.device(f'cuda:{self.local_rank}') |
|
self.lrm_generator.init_flexicubes_geometry(device) |
|
if self.global_rank == 0: |
|
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) |
|
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) |
|
|
|
def collate_fn(self, batch): |
|
gpu_id = torch.cuda.current_device() |
|
glctx = initialize_extension(gpu_id) |
|
batch_size = len(batch) |
|
input_view_num = batch[0]["input_view_num"] |
|
target_view_num = batch[0]["target_view_num"] |
|
iter_res = [512, 512] |
|
iter_spp = 1 |
|
layers = 1 |
|
|
|
|
|
input_images, input_alphas, input_depths, input_normals, input_albedos = [], [], [], [], [] |
|
input_spec_light, input_diff_light, input_spec_albedo,input_diff_albedo = [], [], [], [] |
|
input_w2cs, input_Ks, input_camera_pos, input_c2ws = [], [], [], [] |
|
input_env, input_materials = [], [] |
|
input_camera_embeddings = [] |
|
|
|
target_images, target_alphas, target_depths, target_normals, target_albedos = [], [], [], [], [] |
|
target_spec_light, target_diff_light, target_spec_albedo, target_diff_albedo = [], [], [], [] |
|
target_w2cs, target_Ks, target_camera_pos = [], [], [] |
|
target_env, target_materials = [], [] |
|
|
|
for sample in batch: |
|
obj_path = sample['obj_path'] |
|
|
|
with torch.no_grad(): |
|
mesh_attributes = sample['mesh_attributes'] |
|
v_pos = mesh_attributes["v_pos"].to(self.device) |
|
v_nrm = mesh_attributes["v_nrm"].to(self.device) |
|
v_tex = mesh_attributes["v_tex"].to(self.device) |
|
v_tng = mesh_attributes["v_tng"].to(self.device) |
|
t_pos_idx = mesh_attributes["t_pos_idx"].to(self.device) |
|
t_nrm_idx = mesh_attributes["t_nrm_idx"].to(self.device) |
|
t_tex_idx = mesh_attributes["t_tex_idx"].to(self.device) |
|
t_tng_idx = mesh_attributes["t_tng_idx"].to(self.device) |
|
material = Material(mesh_attributes["mat_dict"]) |
|
material = material.to(self.device) |
|
ref_mesh = Mesh(v_pos=v_pos, v_nrm=v_nrm, v_tex=v_tex, v_tng=v_tng, |
|
t_pos_idx=t_pos_idx, t_nrm_idx=t_nrm_idx, |
|
t_tex_idx=t_tex_idx, t_tng_idx=t_tng_idx, material=material) |
|
|
|
pose_list_sample = sample['pose_list'] |
|
camera_pos_sample = sample['camera_pos'] |
|
c2w_list_sample = sample['c2w_list'] |
|
env_list_sample = sample['env_list'] |
|
material_list_sample = sample['material_list'] |
|
camera_embeddings = sample["camera_embedding_list"] |
|
fov_deg = sample['fov_deg'] |
|
raduis = sample['raduis'] |
|
|
|
|
|
sample_input_images, sample_input_alphas, sample_input_depths, sample_input_normals, sample_input_albedos = [], [], [], [], [] |
|
sample_input_w2cs, sample_input_Ks, sample_input_camera_pos, sample_input_c2ws = [], [], [], [] |
|
sample_input_camera_embeddings = [] |
|
sample_input_spec_light, sample_input_diff_light = [], [] |
|
|
|
sample_target_images, sample_target_alphas, sample_target_depths, sample_target_normals, sample_target_albedos = [], [], [], [], [] |
|
sample_target_w2cs, sample_target_Ks, sample_target_camera_pos = [], [], [] |
|
sample_target_spec_light, sample_target_diff_light = [], [] |
|
|
|
sample_input_env = [] |
|
sample_input_materials = [] |
|
sample_target_env = [] |
|
sample_target_materials = [] |
|
|
|
for i in range(len(pose_list_sample)): |
|
mvp = pose_list_sample[i] |
|
campos = camera_pos_sample[i] |
|
env = env_list_sample[i] |
|
materials = material_list_sample[i] |
|
camera_embedding = camera_embeddings[i] |
|
|
|
with torch.no_grad(): |
|
buffer_dict = render.render_mesh(glctx, ref_mesh, mvp.to(self.device), campos.to(self.device), [env], None, None, |
|
materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True, |
|
background=None, gt_render=True) |
|
|
|
image = convert_to_white_bg(buffer_dict['shaded'][0]) |
|
albedo = convert_to_white_bg(buffer_dict['albedo'][0]).clamp(0., 1.) |
|
alpha = buffer_dict['mask'][0][:, :, 3:] |
|
depth = convert_to_white_bg(buffer_dict['depth'][0]) |
|
normal = convert_to_white_bg(buffer_dict['gb_normal'][0], write_bg=False) |
|
spec_light = convert_to_white_bg(buffer_dict['spec_light'][0]) |
|
diff_light = convert_to_white_bg(buffer_dict['diff_light'][0]) |
|
if i < input_view_num: |
|
sample_input_images.append(image) |
|
sample_input_albedos.append(albedo) |
|
sample_input_alphas.append(alpha) |
|
sample_input_depths.append(depth) |
|
sample_input_normals.append(normal) |
|
sample_input_spec_light.append(spec_light) |
|
sample_input_diff_light.append(diff_light) |
|
sample_input_w2cs.append(mvp) |
|
sample_input_camera_pos.append(campos) |
|
sample_input_c2ws.append(c2w_list_sample[i]) |
|
sample_input_Ks.append(FOV_to_intrinsics(fov_deg)) |
|
sample_input_env.append(env) |
|
sample_input_materials.append(materials) |
|
sample_input_camera_embeddings.append(camera_embedding) |
|
else: |
|
sample_target_images.append(image) |
|
sample_target_albedos.append(albedo) |
|
sample_target_alphas.append(alpha) |
|
sample_target_depths.append(depth) |
|
sample_target_normals.append(normal) |
|
sample_target_spec_light.append(spec_light) |
|
sample_target_diff_light.append(diff_light) |
|
sample_target_w2cs.append(mvp) |
|
sample_target_camera_pos.append(campos) |
|
sample_target_Ks.append(FOV_to_intrinsics(fov_deg)) |
|
sample_target_env.append(env) |
|
sample_target_materials.append(materials) |
|
|
|
input_images.append(torch.stack(sample_input_images, dim=0).permute(0, 3, 1, 2)) |
|
input_albedos.append(torch.stack(sample_input_albedos, dim=0).permute(0, 3, 1, 2)) |
|
input_alphas.append(torch.stack(sample_input_alphas, dim=0).permute(0, 3, 1, 2)) |
|
input_depths.append(torch.stack(sample_input_depths, dim=0).permute(0, 3, 1, 2)) |
|
input_normals.append(torch.stack(sample_input_normals, dim=0).permute(0, 3, 1, 2)) |
|
input_spec_light.append(torch.stack(sample_input_spec_light, dim=0).permute(0, 3, 1, 2)) |
|
input_diff_light.append(torch.stack(sample_input_diff_light, dim=0).permute(0, 3, 1, 2)) |
|
input_w2cs.append(torch.stack(sample_input_w2cs, dim=0)) |
|
input_camera_pos.append(torch.stack(sample_input_camera_pos, dim=0)) |
|
input_c2ws.append(torch.stack(sample_input_c2ws, dim=0)) |
|
input_camera_embeddings.append(torch.stack(sample_input_camera_embeddings, dim=0)) |
|
input_Ks.append(torch.stack(sample_input_Ks, dim=0)) |
|
input_env.append(sample_input_env) |
|
input_materials.append(sample_input_materials) |
|
|
|
target_images.append(torch.stack(sample_target_images, dim=0).permute(0, 3, 1, 2)) |
|
target_albedos.append(torch.stack(sample_target_albedos, dim=0).permute(0, 3, 1, 2)) |
|
target_alphas.append(torch.stack(sample_target_alphas, dim=0).permute(0, 3, 1, 2)) |
|
target_depths.append(torch.stack(sample_target_depths, dim=0).permute(0, 3, 1, 2)) |
|
target_normals.append(torch.stack(sample_target_normals, dim=0).permute(0, 3, 1, 2)) |
|
target_spec_light.append(torch.stack(sample_target_spec_light, dim=0).permute(0, 3, 1, 2)) |
|
target_diff_light.append(torch.stack(sample_target_diff_light, dim=0).permute(0, 3, 1, 2)) |
|
target_w2cs.append(torch.stack(sample_target_w2cs, dim=0)) |
|
target_camera_pos.append(torch.stack(sample_target_camera_pos, dim=0)) |
|
target_Ks.append(torch.stack(sample_target_Ks, dim=0)) |
|
target_env.append(sample_target_env) |
|
target_materials.append(sample_target_materials) |
|
|
|
del ref_mesh |
|
del material |
|
del mesh_attributes |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
data = { |
|
'input_images': torch.stack(input_images, dim=0).detach().cpu(), |
|
'input_alphas': torch.stack(input_alphas, dim=0).detach().cpu(), |
|
'input_depths': torch.stack(input_depths, dim=0).detach().cpu(), |
|
'input_normals': torch.stack(input_normals, dim=0).detach().cpu(), |
|
'input_albedos': torch.stack(input_albedos, dim=0).detach().cpu(), |
|
'input_spec_light': torch.stack(input_spec_light, dim=0).detach().cpu(), |
|
'input_diff_light': torch.stack(input_diff_light, dim=0).detach().cpu(), |
|
'input_materials': input_materials, |
|
'input_w2cs': torch.stack(input_w2cs, dim=0).squeeze(2), |
|
'input_Ks': torch.stack(input_Ks, dim=0).float(), |
|
'input_env': input_env, |
|
'input_camera_pos': torch.stack(input_camera_pos, dim=0).squeeze(2), |
|
'input_c2ws': torch.stack(input_c2ws, dim=0).squeeze(2), |
|
'input_camera_embedding': torch.stack(input_camera_embeddings, dim=0).squeeze(2), |
|
|
|
'target_sample_points': None, |
|
'target_images': torch.stack(target_images, dim=0).detach().cpu(), |
|
'target_alphas': torch.stack(target_alphas, dim=0).detach().cpu(), |
|
'target_depths': torch.stack(target_depths, dim=0).detach().cpu(), |
|
'target_normals': torch.stack(target_normals, dim=0).detach().cpu(), |
|
'target_albedos': torch.stack(target_albedos, dim=0).detach().cpu(), |
|
'target_spec_light': torch.stack(target_spec_light, dim=0).detach().cpu(), |
|
'target_diff_light': torch.stack(target_diff_light, dim=0).detach().cpu(), |
|
'target_materials': target_materials, |
|
'target_w2cs': torch.stack(target_w2cs, dim=0).squeeze(2), |
|
'target_Ks': torch.stack(target_Ks, dim=0).float(), |
|
'target_env': target_env, |
|
'target_camera_pos': torch.stack(target_camera_pos, dim=0).squeeze(2) |
|
} |
|
|
|
return data |
|
|
|
def prepare_batch_data(self, batch): |
|
|
|
lrm_generator_input = {} |
|
render_gt = {} |
|
|
|
|
|
images = batch['input_images'] |
|
images = v2.functional.resize(images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) |
|
batch_size = images.shape[0] |
|
|
|
lrm_generator_input['images'] = images.to(self.device) |
|
|
|
|
|
|
|
input_Ks = batch['input_Ks'] |
|
|
|
input_camera_embedding = batch["input_camera_embedding"].to(self.device) |
|
|
|
input_w2cs = batch['input_w2cs'] |
|
target_w2cs = batch['target_w2cs'] |
|
render_w2cs = torch.cat([input_w2cs, target_w2cs], dim=1) |
|
|
|
input_camera_pos = batch['input_camera_pos'] |
|
target_camera_pos = batch['target_camera_pos'] |
|
render_camera_pos = torch.cat([input_camera_pos, target_camera_pos], dim=1) |
|
|
|
input_extrinsics = input_camera_embedding.flatten(-2) |
|
input_extrinsics = input_extrinsics[:, :, :12] |
|
input_intrinsics = input_Ks.flatten(-2).to(self.device) |
|
input_intrinsics = torch.stack([ |
|
input_intrinsics[:, :, 0], input_intrinsics[:, :, 4], |
|
input_intrinsics[:, :, 2], input_intrinsics[:, :, 5], |
|
], dim=-1) |
|
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) |
|
|
|
|
|
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 |
|
|
|
lrm_generator_input['cameras'] = cameras.to(self.device) |
|
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) |
|
lrm_generator_input['cameras_pos'] = render_camera_pos.to(self.device) |
|
lrm_generator_input['env'] = [] |
|
lrm_generator_input['materials'] = [] |
|
for i in range(batch_size): |
|
lrm_generator_input['env'].append( batch['input_env'][i] + batch['target_env'][i]) |
|
lrm_generator_input['materials'].append( batch['input_materials'][i] + batch['target_materials'][i]) |
|
lrm_generator_input['albedo'] = torch.cat([batch['input_albedos'],batch['target_albedos']],dim=1) |
|
|
|
|
|
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) |
|
target_albedos = torch.cat([batch['input_albedos'], batch['target_albedos']], dim=1) |
|
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) |
|
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) |
|
target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1) |
|
target_spec_lights = torch.cat([batch['input_spec_light'], batch['target_spec_light']], dim=1) |
|
target_diff_lights = torch.cat([batch['input_diff_light'], batch['target_diff_light']], dim=1) |
|
|
|
render_size = self.render_size |
|
target_images = v2.functional.resize( |
|
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) |
|
target_depths = v2.functional.resize( |
|
target_depths, render_size, interpolation=0, antialias=True) |
|
target_alphas = v2.functional.resize( |
|
target_alphas, render_size, interpolation=0, antialias=True) |
|
target_normals = v2.functional.resize( |
|
target_normals, render_size, interpolation=3, antialias=True) |
|
|
|
lrm_generator_input['render_size'] = render_size |
|
|
|
render_gt['target_sample_points'] = batch['target_sample_points'] |
|
render_gt['target_images'] = target_images.to(self.device) |
|
render_gt['target_albedos'] = target_albedos.to(self.device) |
|
render_gt['target_depths'] = target_depths.to(self.device) |
|
render_gt['target_alphas'] = target_alphas.to(self.device) |
|
render_gt['target_normals'] = target_normals.to(self.device) |
|
render_gt['target_spec_lights'] = target_spec_lights.to(self.device) |
|
render_gt['target_diff_lights'] = target_diff_lights.to(self.device) |
|
|
|
|
|
return lrm_generator_input, render_gt |
|
|
|
def prepare_validation_batch_data(self, batch): |
|
lrm_generator_input = {} |
|
|
|
|
|
images = batch['input_images'] |
|
images = v2.functional.resize( |
|
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
lrm_generator_input['images'] = images.to(self.device) |
|
lrm_generator_input['specular_light'] = batch['specular'] |
|
lrm_generator_input['diffuse_light'] = batch['diffuse'] |
|
|
|
lrm_generator_input['metallic'] = batch['input_metallics'] |
|
lrm_generator_input['roughness'] = batch['input_roughness'] |
|
|
|
proj = self.perspective(0.449, 1, 0.1, 1000., self.device) |
|
|
|
|
|
input_c2ws = batch['input_c2ws'].flatten(-2) |
|
input_Ks = batch['input_Ks'].flatten(-2) |
|
|
|
input_extrinsics = input_c2ws[:, :, :12] |
|
input_intrinsics = torch.stack([ |
|
input_Ks[:, :, 0], input_Ks[:, :, 4], |
|
input_Ks[:, :, 2], input_Ks[:, :, 5], |
|
], dim=-1) |
|
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) |
|
|
|
lrm_generator_input['cameras'] = cameras.to(self.device) |
|
|
|
|
|
render_c2ws = batch['render_c2ws'] |
|
|
|
lrm_generator_input['camera_pos'] = torch.linalg.inv(render_w2cs.to(self.device) @ rotate_x(np.pi / 2, self.device))[..., :3, 3] |
|
render_w2cs = ( render_w2cs @ rotate_x(np.pi / 2) ) |
|
|
|
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) |
|
lrm_generator_input['render_size'] = 384 |
|
|
|
return lrm_generator_input |
|
|
|
def forward_lrm_generator(self, images, cameras, camera_pos,env, materials, albedo_map, render_cameras, render_size=512, sample_points=None, gt_albedo_map=None): |
|
planes = torch.utils.checkpoint.checkpoint( |
|
self.lrm_generator.forward_planes, |
|
images, |
|
cameras, |
|
use_reentrant=False, |
|
) |
|
out = self.lrm_generator.forward_geometry( |
|
planes, |
|
render_cameras, |
|
camera_pos, |
|
env, |
|
materials, |
|
albedo_map, |
|
render_size, |
|
sample_points, |
|
gt_albedo_map |
|
) |
|
return out |
|
|
|
def forward(self, lrm_generator_input, gt_albedo_map=None): |
|
images = lrm_generator_input['images'] |
|
cameras = lrm_generator_input['cameras'] |
|
render_cameras = lrm_generator_input['render_cameras'] |
|
render_size = lrm_generator_input['render_size'] |
|
env = lrm_generator_input['env'] |
|
materials = lrm_generator_input['materials'] |
|
albedo_map = lrm_generator_input['albedo'] |
|
camera_pos = lrm_generator_input['cameras_pos'] |
|
|
|
out = self.forward_lrm_generator( |
|
images, cameras, camera_pos, env, materials, albedo_map, render_cameras, render_size=render_size, sample_points=self.sample_points, gt_albedo_map=gt_albedo_map) |
|
|
|
return out |
|
|
|
def training_step(self, batch, batch_idx): |
|
batch = self.collate_fn(batch) |
|
lrm_generator_input, render_gt = self.prepare_batch_data(batch) |
|
if self.use_gt_albedo: |
|
gt_albedo_map = render_gt['target_albedos'] |
|
else: |
|
gt_albedo_map = None |
|
render_out = self.forward(lrm_generator_input, gt_albedo_map=gt_albedo_map) |
|
|
|
loss, loss_dict = self.compute_loss(render_out, render_gt) |
|
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, batch_size=len(batch['input_images']), sync_dist=True) |
|
|
|
if self.global_step % 20 == 0 and self.global_rank == 0 : |
|
B, N, C, H, W = render_gt['target_images'].shape |
|
N_in = lrm_generator_input['images'].shape[1] |
|
|
|
target_images = rearrange(render_gt['target_images'], 'b n c h w -> b c h (n w)') |
|
render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)') |
|
target_alphas = rearrange(repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') |
|
target_spec_light = rearrange(render_gt['target_spec_lights'], 'b n c h w -> b c h (n w)') |
|
target_diff_light = rearrange(render_gt['target_diff_lights'], 'b n c h w -> b c h (n w)') |
|
|
|
render_alphas = rearrange(render_out['mask'], 'b n c h w -> b c h (n w)') |
|
render_albodos = rearrange(render_out['albedo'], 'b n c h w -> b c h (n w)') |
|
target_albedos = rearrange(render_gt['target_albedos'], 'b n c h w -> b c h (n w)') |
|
|
|
render_spec_light = rearrange(render_out['pbr_spec_light'], 'b n c h w -> b c h (n w)') |
|
render_diffuse_light = rearrange(render_out['pbr_diffuse_light'], 'b n c h w -> b c h (n w)') |
|
render_normal = rearrange(render_out['normal_img'], 'b n c h w -> b c h (n w)') |
|
target_depths = rearrange(render_gt['target_depths'], 'b n c h w -> b c h (n w)') |
|
render_depths = rearrange(render_out['depth'], 'b n c h w -> b c h (n w)') |
|
target_normals = rearrange(render_gt['target_normals'], 'b n c h w -> b c h (n w)') |
|
|
|
MAX_DEPTH = torch.max(target_depths) |
|
target_depths = target_depths / MAX_DEPTH * target_alphas |
|
render_depths = render_depths / MAX_DEPTH * render_alphas |
|
|
|
grid = torch.cat([ |
|
target_images, render_images, |
|
target_alphas, render_alphas, |
|
target_albedos, render_albodos, |
|
target_spec_light, render_spec_light, |
|
target_diff_light, render_diffuse_light, |
|
(target_normals+1)/2, (render_normal+1)/2, |
|
target_depths, render_depths |
|
], dim=-2).detach().cpu() |
|
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) |
|
|
|
image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png') |
|
save_image(grid, image_path) |
|
print(f"Saved image to {image_path}") |
|
return loss |
|
|
|
|
|
def total_variation_loss(self, img, beta=2.0): |
|
bs_img, n_view, c_img, h_img, w_img = img.size() |
|
tv_h = torch.pow(img[...,1:,:]-img[...,:-1,:], beta).sum() |
|
tv_w = torch.pow(img[...,:,1:]-img[...,:,:-1], beta).sum() |
|
return (tv_h+tv_w)/(bs_img*n_view*c_img*h_img*w_img) |
|
|
|
|
|
def compute_loss(self, render_out, render_gt): |
|
|
|
render_albedo_image = render_out['albedo'] |
|
render_pbr_image = render_out['pbr_img'] |
|
render_spec_light = render_out['pbr_spec_light'] |
|
render_diff_light = render_out['pbr_diffuse_light'] |
|
|
|
target_images = render_gt['target_images'].to(render_albedo_image) |
|
target_albedos = render_gt['target_albedos'].to(render_albedo_image) |
|
target_spec_light = render_gt['target_spec_lights'].to(render_albedo_image) |
|
target_diff_light = render_gt['target_diff_lights'].to(render_albedo_image) |
|
|
|
render_images = rearrange(render_pbr_image, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
|
|
render_albedos = rearrange(render_albedo_image, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
target_albedos = rearrange(target_albedos, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
|
|
render_spec_light = rearrange(render_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
target_spec_light = rearrange(target_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
|
|
render_diff_light = rearrange(render_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
target_diff_light = rearrange(target_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
|
|
|
|
loss_mse = F.mse_loss(render_images, target_images) |
|
loss_mse_albedo = F.mse_loss(render_albedos, target_albedos) |
|
loss_rgb_lpips = 2.0 * self.lpips(render_images, target_images) |
|
loss_albedo_lpips = 2.0 * self.lpips(render_albedos, target_albedos) |
|
|
|
loss_spec_light = F.mse_loss(render_spec_light, target_spec_light) |
|
loss_diff_light = F.mse_loss(render_diff_light, target_diff_light) |
|
loss_spec_light_lpips = 2.0 * self.lpips(render_spec_light.clamp(-1., 1.), target_spec_light.clamp(-1., 1.)) |
|
loss_diff_light_lpips = 2.0 * self.lpips(render_diff_light.clamp(-1., 1.), target_diff_light.clamp(-1., 1.)) |
|
|
|
render_alphas = render_out['mask'][:,:,:1,:,:] |
|
target_alphas = render_gt['target_alphas'] |
|
|
|
loss_mask = F.mse_loss(render_alphas, target_alphas) |
|
render_depths = torch.mean(render_out['depth'], dim=2, keepdim=True) |
|
target_depths = torch.mean(render_gt['target_depths'], dim=2, keepdim=True) |
|
loss_depth = 0.5 * F.l1_loss(render_depths[(target_alphas>0)], target_depths[target_alphas>0]) |
|
|
|
render_normals = render_out['normal'][...,:3].permute(0,3,1,2).unsqueeze(0) |
|
target_normals = render_gt['target_normals'] |
|
similarity = (render_normals * target_normals).sum(dim=-3).abs() |
|
normal_mask = target_alphas.squeeze(-3) |
|
loss_normal = 1 - similarity[normal_mask>0].mean() |
|
loss_normal = 0.2 * loss_normal * 1.0 |
|
|
|
|
|
if self.use_tv_loss: |
|
triplane = render_out['triplane'] |
|
tv_loss = self.total_variation_loss(triplane, beta=2.0) |
|
|
|
|
|
sdf = render_out['sdf'] |
|
sdf_reg_loss = render_out['sdf_reg_loss'] |
|
sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01 |
|
_, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss |
|
flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5 |
|
flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1 |
|
|
|
loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg |
|
loss_reg = loss_reg |
|
loss = loss_mse + loss_rgb_lpips + loss_albedo_lpips + loss_mask + loss_reg + loss_mse_albedo + loss_depth + \ |
|
loss_normal + loss_spec_light + loss_diff_light + loss_spec_light_lpips + loss_diff_light_lpips |
|
if self.use_tv_loss: |
|
loss += tv_loss * 2e-4 |
|
|
|
prefix = 'train' |
|
loss_dict = {} |
|
|
|
loss_dict.update({f'{prefix}/loss_mse': loss_mse.item()}) |
|
loss_dict.update({f'{prefix}/loss_mse_albedo': loss_mse_albedo.item()}) |
|
loss_dict.update({f'{prefix}/loss_rgb_lpips': loss_rgb_lpips.item()}) |
|
loss_dict.update({f'{prefix}/loss_albedo_lpips': loss_albedo_lpips.item()}) |
|
loss_dict.update({f'{prefix}/loss_mask': loss_mask.item()}) |
|
loss_dict.update({f'{prefix}/loss_normal': loss_normal.item()}) |
|
loss_dict.update({f'{prefix}/loss_depth': loss_depth.item()}) |
|
loss_dict.update({f'{prefix}/loss_spec_light': loss_spec_light.item()}) |
|
loss_dict.update({f'{prefix}/loss_diff_light': loss_diff_light.item()}) |
|
loss_dict.update({f'{prefix}/loss_spec_light_lpips': loss_spec_light_lpips.item()}) |
|
loss_dict.update({f'{prefix}/loss_diff_light_lpips': loss_diff_light_lpips.item()}) |
|
loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy.item()}) |
|
loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg.item()}) |
|
loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg.item()}) |
|
if self.use_tv_loss: |
|
loss_dict.update({f'{prefix}/loss_tv': tv_loss.item()}) |
|
loss_dict.update({f'{prefix}/loss': loss.item()}) |
|
|
|
return loss, loss_dict |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
lrm_generator_input = self.prepare_validation_batch_data(batch) |
|
|
|
render_out = self.forward(lrm_generator_input) |
|
render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)') |
|
render_albodos = rearrange(render_out['img'], 'b n c h w -> b c h (n w)') |
|
|
|
self.validation_step_outputs.append(render_images) |
|
self.validation_step_outputs.append(render_albodos) |
|
|
|
def on_validation_epoch_end(self): |
|
images = torch.cat(self.validation_step_outputs, dim=0) |
|
|
|
all_images = self.all_gather(images) |
|
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') |
|
|
|
if self.global_rank == 0: |
|
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') |
|
|
|
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) |
|
|
|
save_image(grid, image_path) |
|
print(f"Saved image to {image_path}") |
|
|
|
self.validation_step_outputs.clear() |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
|
|
optimizer = torch.optim.AdamW( |
|
self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01) |
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0) |
|
|
|
return {'optimizer': optimizer, 'lr_scheduler': scheduler} |
|
|