PRM / train.py
JiantaoLin
new
2fe3da0
import os, sys
import argparse
import shutil
import subprocess
from omegaconf import OmegaConf
import torch
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_only
from src.utils.train_util import instantiate_from_config
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
@rank_zero_only
def rank_zero_print(*args):
print(*args)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-r",
"--resume",
type=str,
default=None,
help="resume from checkpoint",
)
parser.add_argument(
"--resume_weights_only",
action="store_true",
help="only resume model weights",
)
parser.add_argument(
"-b",
"--base",
type=str,
default="base_config.yaml",
help="path to base configs",
)
parser.add_argument(
"-n",
"--name",
type=str,
default="",
help="experiment name",
)
parser.add_argument(
"--num_nodes",
type=int,
default=1,
help="number of nodes to use",
)
parser.add_argument(
"--gpus",
type=str,
default="0,",
help="gpu ids to use",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=42,
help="seed for seed_everything",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging data",
)
return parser
class ClearCacheCallback(Callback):
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
torch.cuda.empty_cache()
# print("Cleared CUDA cache after training batch")
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
torch.cuda.empty_cache()
# print("Cleared CUDA cache after validation batch")
class SetupCallback(Callback):
def __init__(self, resume, logdir, ckptdir, cfgdir, config):
super().__init__()
self.resume = resume
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
rank_zero_print("Project config")
rank_zero_print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "project.yaml"))
class CodeSnapshot(Callback):
"""
Modified from https://github.com/threestudio-project/threestudio/blob/main/threestudio/utils/callbacks.py#L60
"""
def __init__(self, savedir):
self.savedir = savedir
def get_file_list(self):
return [
b.decode()
for b in set(
subprocess.check_output(
'git ls-files -- ":!:configs/*"', shell=True
).splitlines()
)
| set( # hard code, TODO: use config to exclude folders or files
subprocess.check_output(
"git ls-files --others --exclude-standard", shell=True
).splitlines()
)
]
@rank_zero_only
def save_code_snapshot(self):
os.makedirs(self.savedir, exist_ok=True)
for f in self.get_file_list():
if not os.path.exists(f) or os.path.isdir(f):
continue
os.makedirs(os.path.join(self.savedir, os.path.dirname(f)), exist_ok=True)
shutil.copyfile(f, os.path.join(self.savedir, f))
def on_fit_start(self, trainer, pl_module):
try:
# self.save_code_snapshot()
pass
except:
rank_zero_only(
"Code snapshot is not saved. Please make sure you have git installed and are in a git repository."
)
if __name__ == "__main__":
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
cfg_fname = os.path.split(opt.base)[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
exp_name = "-" + opt.name if opt.name != "" else ""
logdir = os.path.join(opt.logdir, cfg_name+exp_name)
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
codedir = os.path.join(logdir, "code")
seed_everything(opt.seed)
# init configs
config = OmegaConf.load(opt.base)
lightning_config = config.lightning
trainer_config = lightning_config.trainer
trainer_config["accelerator"] = "cuda"
rank_zero_print(f"Running on GPUs {opt.gpus}")
ngpu = len(opt.gpus.strip(",").split(','))
trainer_config['devices'] = ngpu
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
if opt.resume and opt.resume_weights_only:
model = model.__class__.load_from_checkpoint(opt.resume, **config.model.params)
model.logdir = logdir
# trainer and callbacks
trainer_kwargs = dict()
# logger
default_logger_cfg = {
"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {
"name": "tensorboard",
"save_dir": logdir,
"version": "0",
}
}
logger_cfg = OmegaConf.merge(default_logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# model checkpoint
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{step:08}",
"verbose": True,
"save_last": True,
"every_n_train_steps": 5000,
"save_top_k": -1, # save all checkpoints
}
}
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
# callbacks
default_callbacks_cfg = {
"setup_callback": {
"target": "train.SetupCallback",
"params": {
"resume": opt.resume,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
}
},
"learning_rate_logger": {
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
"params": {
"logging_interval": "step",
}
},
"code_snapshot": {
"target": "train.CodeSnapshot",
"params": {
"savedir": codedir,
}
},
}
default_callbacks_cfg["checkpoint_callback"] = modelckpt_cfg
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
trainer_kwargs["callbacks"] = [
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer_kwargs["callbacks"].append(ClearCacheCallback())
trainer_kwargs['precision'] = '32-true'
trainer_kwargs["strategy"] = DDPStrategy(find_unused_parameters=True)
# trainer
trainer = Trainer(**trainer_config, **trainer_kwargs, num_nodes=opt.num_nodes)
trainer.logdir = logdir
# data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup("fit")
# configure learning rate
base_lr = config.model.base_learning_rate
if 'accumulate_grad_batches' in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
rank_zero_print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
model.learning_rate = base_lr
rank_zero_print("++++ NOT USING LR SCALING ++++")
rank_zero_print(f"Setting learning rate to {model.learning_rate:.2e}")
# run training loop
if opt.resume and not opt.resume_weights_only:
trainer.fit(model, data, ckpt_path=opt.resume)
else:
trainer.fit(model, data)