Spaces:
Running
Running
File size: 9,765 Bytes
6bcb009 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import threading
from typing import Any
import insightface
import roop.globals
from roop.typing import Frame, Face
import cv2
import numpy as np
from skimage import transform as trans
from roop.capturer import get_video_frame
from roop.utilities import resolve_relative_path, conditional_download
FACE_ANALYSER = None
THREAD_LOCK_ANALYSER = threading.Lock()
THREAD_LOCK_SWAPPER = threading.Lock()
FACE_SWAPPER = None
def get_face_analyser() -> Any:
global FACE_ANALYSER
with THREAD_LOCK_ANALYSER:
if FACE_ANALYSER is None:
if roop.globals.CFG.force_cpu:
print('Forcing CPU for Face Analysis')
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider'])
else:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640) if roop.globals.default_det_size else (320,320))
return FACE_ANALYSER
def get_first_face(frame: Frame) -> Any:
try:
faces = get_face_analyser().get(frame)
return min(faces, key=lambda x: x.bbox[0])
# return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
except:
return None
def get_all_faces(frame: Frame) -> Any:
try:
faces = get_face_analyser().get(frame)
return sorted(faces, key = lambda x : x.bbox[0])
except:
return None
def extract_face_images(source_filename, video_info, extra_padding=-1.0):
face_data = []
source_image = None
if video_info[0]:
frame = get_video_frame(source_filename, video_info[1])
if frame is not None:
source_image = frame
else:
return face_data
else:
source_image = cv2.imread(source_filename)
faces = get_all_faces(source_image)
if faces is None:
return face_data
i = 0
for face in faces:
(startX, startY, endX, endY) = face['bbox'].astype("int")
if extra_padding > 0.0:
if source_image.shape[:2] == (512,512):
i += 1
face_data.append([face, source_image])
continue
found = False
for i in range(1,3):
(startX, startY, endX, endY) = face['bbox'].astype("int")
cutout_padding = extra_padding
# top needs extra room for detection
padding = int((endY - startY) * cutout_padding)
oldY = startY
startY -= padding
factor = 0.25 if i == 1 else 0.5
cutout_padding = factor
padding = int((endY - oldY) * cutout_padding)
endY += padding
padding = int((endX - startX) * cutout_padding)
startX -= padding
endX += padding
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
face_temp = source_image[startY:endY, startX:endX]
face_temp = resize_image_keep_content(face_temp)
testfaces = get_all_faces(face_temp)
if testfaces is not None and len(testfaces) > 0:
i += 1
face_data.append([testfaces[0], face_temp])
found = True
break
if not found:
print("No face found after resizing, this shouldn't happen!")
continue
face_temp = source_image[startY:endY, startX:endX]
if face_temp.size < 1:
continue
i += 1
face_data.append([face, face_temp])
return face_data
def clamp_cut_values(startX, endX, startY, endY, image):
if startX < 0:
startX = 0
if endX > image.shape[1]:
endX = image.shape[1]
if startY < 0:
startY = 0
if endY > image.shape[0]:
endY = image.shape[0]
return startX, endX, startY, endY
def get_face_swapper() -> Any:
global FACE_SWAPPER
with THREAD_LOCK_SWAPPER:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
return FACE_SWAPPER
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
return True
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
def face_offset_top(face: Face, offset):
smallestmin = np.min(face.landmark_2d_106, 1)
smallest = smallestmin[1]
face['bbox'][1] += offset
face['bbox'][3] += offset
lm106 = face.landmark_2d_106
add = np.full_like(lm106, [0, offset])
face['landmark_2d_106'] = lm106 + add
return face
def resize_image_keep_content(image, new_width=512, new_height=512):
dim = None
(h, w) = image.shape[:2]
if h > w:
r = new_height / float(h)
dim = (int(w * r), new_height)
else:
# Calculate the ratio of the width and construct the dimensions
r = new_width / float(w)
dim = (new_width, int(h * r))
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
(h, w) = image.shape[:2]
if h == new_height and w == new_width:
return image
resize_img = np.zeros(shape=(new_height,new_width,3), dtype=image.dtype)
offs = (new_width - w) if h == new_height else (new_height - h)
startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
offs = int(offs // 2)
if h == new_height:
resize_img[0:new_height, startoffs:new_width-offs] = image
else:
resize_img[startoffs:new_height-offs, 0:new_width] = image
return resize_img
def rotate_image_90(image, rotate=True):
if rotate:
return np.rot90(image)
else:
return np.rot90(image,1,(1,0))
def rotate_image_180(image):
return np.flip(image,0)
# alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112,mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size%112==0 or image_size%128==0
if image_size%112==0:
ratio = float(image_size)/112.0
diff_x = 0
else:
ratio = float(image_size)/128.0
diff_x = 8.0*ratio
dst = arcface_dst * ratio
dst[:,0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def norm_crop(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped
# aligned, M = norm_crop2(f[1], face.kps, 512)
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped, M
def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
return det_im, scale
def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data,
M, (output_size, output_size),
borderValue=0.0)
return cropped, M
def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]
return new_pts
def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
#print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale
return new_pts
def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)
|